A ridiculously awesome non linear differential equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ต.ค. 2024
  • Non linear DEs often have fascinating solution developments and this one here is no exception. The icing on the cake is the function solving the equation being far from boring.

ความคิดเห็น • 32

  • @archiebrew8184
    @archiebrew8184 ปีที่แล้ว +45

    You can get a cool solution for y in terms of x using the Lambert W function if you want an extra challenge

    • @maths_505
      @maths_505  ปีที่แล้ว +26

      This cool challenge is left as an exercise to the viewer 😂

    • @blableu4519
      @blableu4519 ปีที่แล้ว +21

      Here's, I hope, the correct solution for anyone that wants it (with simplifications implicitly made along the way to clean up expressions and not be redundant):
      Let's start with our base equation:
      x = B - Ay - (1 + A²)ln|A-y|
      By putting B on the x side and then multiplying everything by -1, we get:
      B - x = Ay + (1 + A²)ln|A - y|
      Raising everything by e, we get:
      e^(B - x) = (A - y)^(1 + A²) * e^(Ay)
      To get rid of the pesky 1 + A² exponent, let's root everything by it:
      e^[(B - x)/(1 + A²)]
      =
      (A - y) * e^[Ay/(1 + A²)]
      Multiplying every side by -A/(1 + A²) to adjust the A - y factor to the exponent, we get:
      -A/(1 + A²) * e^[(B - x)/(1 + A²)]
      =
      (Ay - A²)/(1 + A²) * e^[Ay/(1 + A²)]
      Finally, for the exponent on the RHS to correspond to the factor, we'll multiply both sides by
      e^[-A²/(1 + A²)]:
      -A/(1 + A²) * e^[(B - A² - x)/(1 + A²)]
      =
      (Ay - A²)/(1 + A²) * e^[(Ay - A²)/(1 + A²)]
      We can thus use the Lambert W function to complete the task:
      W{ -A/(1 + A²) * e^[(B - A² - x)/(1 + A²)] }
      =
      (Ay - A²)/(1 + A²) = [A/(1 + A²)](y - A)
      The result is therefore obtained trivially, after removal of the additional factor and additive constant:
      y
      =
      (1+A²)/A * W{ -A/(1 + A²) * e^[(B - A² - x)/(1 + A²)] } + A

    • @Maths_3.1415
      @Maths_3.1415 ปีที่แล้ว +1

      ​@@maths_505 fermat's style 😂

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      @@Maths_3.1415 😂😂😂

  • @shivanshnigam4015
    @shivanshnigam4015 ปีที่แล้ว +17

    I think "A" is now the most powerful constant ever to exist

    • @maths_505
      @maths_505  ปีที่แล้ว

      😂😂😂

    • @pulkithere83
      @pulkithere83 ปีที่แล้ว

      Technically it is not a constant. It can vary. That's why we have to mention constant OF INTEGRATION

  • @kshitishp3662
    @kshitishp3662 ปีที่แล้ว +5

    I think the following method would be simpler and it gives a different answer .
    We have , y''(1+y²)+(y')³+y'=0
    Taking the y' out ,
    y''(1+y²)= - y'(1+(y')²)
    Rearranging -
    y''/(1+(y')²) = - y'/(1+y²)
    integrating both sides w.r.t dy' and dy respectively , we get -
    y' = -y from which we can say
    y = e^-x .
    You can even check it's validity by substituting in the equation .

    • @Algi1998
      @Algi1998 ปีที่แล้ว +2

      With a little extra work, we can see this is part of the same solution by setting A = B = 0
      x = B - Ay - (1+A²)ln|A-y|
      => x = -ln|-y|
      => -x = ln|y| (note that |-y| = |y|)
      => e^-x = y

    • @kubratdanailov9406
      @kubratdanailov9406 ปีที่แล้ว +2

      You are missing a constant of integration which in this video is A. You are getting what the answer should be if A=0.

  • @anupamamehra6068
    @anupamamehra6068 ปีที่แล้ว +1

    Thanks for this one very interesting

  • @slavinojunepri7648
    @slavinojunepri7648 ปีที่แล้ว

    This a magnificent result indeed.

  • @michaelbaum6796
    @michaelbaum6796 ปีที่แล้ว

    Wow, what a cool solution 👍

  • @MrWael1970
    @MrWael1970 ปีที่แล้ว

    Thank you for your effort.

  • @erfanmohagheghian707
    @erfanmohagheghian707 ปีที่แล้ว +1

    You should mention that the arctan identity you're using is correct up to a constant and it's not the same for all combinations of u and y

  • @SuperSilver316
    @SuperSilver316 ปีที่แล้ว +1

    This is probably a dumb question, but when using the arc tangent sum formula in this problem, do we have to consider all of the possible cases for where we need to add or subtract a constant term pi? For example the formula
    arctan(u)+arctan(y) = arctan((u+y)/(1-u*y)) when u*y1, you just add or subtract a pi based on the sign of u I think? Would that pi just become absorbed into A and you can proceed with problem as normal?
    In general, would you have to consider those cases if say the constant A wasn’t there to begin with?

    • @maths_505
      @maths_505  ปีที่แล้ว +5

      That's not a dumb question at all. Its actually a valid one and yes more attention should be given here. The constant of integration will take care of it though given the initial conditions.

  • @michaelmello42
    @michaelmello42 ปีที่แล้ว +1

    this was fun!

  • @JohnLee-dp8ey
    @JohnLee-dp8ey ปีที่แล้ว +3

    Try sin(d2y/dx2)+cos(dy/dx)+y=0

  • @Grundini91
    @Grundini91 ปีที่แล้ว

    A is for arbitrary constant.

  • @pulkithere83
    @pulkithere83 ปีที่แล้ว

    Awesome

  • @Dheeraj5373
    @Dheeraj5373 ปีที่แล้ว

    That seems to be terrible at first glance but as the video progresses it becomes easy to solve.
    😂🎉❤ Thanks 🙏 bro for that videos

  • @frankreashore
    @frankreashore ปีที่แล้ว

    Nice

  • @videolome
    @videolome ปีที่แล้ว

    That sum of arctangents is not true in general

  • @Maths_3.1415
    @Maths_3.1415 ปีที่แล้ว +1

    Surely you're joking...

  • @thefox4671
    @thefox4671 ปีที่แล้ว

    nice

  • @comdo777
    @comdo777 ปีที่แล้ว

    asnwer=1 isit

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    Le equazioni differenziali non è il mio forte..le ho studiate 30anni fa...

  • @bassemarfaoui3955
    @bassemarfaoui3955 ปีที่แล้ว +1

    first comment and vue

  • @michaelbaum6796
    @michaelbaum6796 ปีที่แล้ว

    Wow, what a cool solution 👍