Discriminant Analysis in R

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ธ.ค. 2024

ความคิดเห็น • 18

  • @alonsomadronal2919
    @alonsomadronal2919 3 ปีที่แล้ว +1

    Omg thank you so much I have been stuck in the same LDA problem for an hour, you helped me to solve it!!

  • @josealejandrolozanoarias5759
    @josealejandrolozanoarias5759 ปีที่แล้ว +1

    Absolutely amazing! Thank you so much.

  • @fullsurr3465
    @fullsurr3465 4 ปีที่แล้ว +1

    Many Thanks!

  • @SamMoore19
    @SamMoore19 5 ปีที่แล้ว +1

    you can use logistic regression for any number of levels

    • @mathetal
      @mathetal  4 ปีที่แล้ว

      You're right ! :o

  • @kseniyapak3086
    @kseniyapak3086 2 ปีที่แล้ว

    thanks for the vid...question...if i wanna improve prediction...how to know which variables to take out and which ones keep? there must be some logic or indicator or smth not just a pure guess

  • @simonsherman828
    @simonsherman828 2 ปีที่แล้ว

    Great video. How do you get the function scores at the end of the process? For example, if I had 5 groups I wanted to classify using this supervised classification technique. Typically it will generate one less function than the number of groups (n=4). I am a total R-studio newb and would like to know how to get these scores?

  • @yoannkouame3282
    @yoannkouame3282 4 ปีที่แล้ว +1

    Nice !!

  • @laurag.6122
    @laurag.6122 4 ปีที่แล้ว +1

    Thanks for sharing! I have a question: How did you choose the set.seed number? does it depend on sample size?

    • @mathetal
      @mathetal  4 ปีที่แล้ว +1

      It can be any number and it doesn't matter. The main point is to just reuse whatever seed you pick if you want to replicate your results!

    • @laurag.6122
      @laurag.6122 4 ปีที่แล้ว +1

      @@mathetal :) thank you! your video is really helpfull

  • @Borzacchinni
    @Borzacchinni 4 ปีที่แล้ว

    all good except plots dont work for me :(

  • @MAK335
    @MAK335 4 ปีที่แล้ว

    is this bayer LDA

  • @blackwhite7134
    @blackwhite7134 5 ปีที่แล้ว +1

    The video is very well explained till you start talking about the interesting part that is the Quadratic discriminant analysis. From there you rush a bit.

  • @AnimalLore_YT
    @AnimalLore_YT 3 ปีที่แล้ว +1

    ga ngerti mbak

  • @Galmion
    @Galmion 4 ปีที่แล้ว +1

    I will never understand why people opt to not use caret when it makes everything so much cleaner and easier for you.
    Everything you showed here could be done more easily and more elegantly by using the functions from the caret package, which also uses CV very conveniently

  • @AnimalLore_YT
    @AnimalLore_YT 3 ปีที่แล้ว

    suwun mbak, saya ga jadi ga ngerti