Prove 30^(10n+1) + 5^21n is divisible by 31

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ธ.ค. 2024

ความคิดเห็น • 73

  • @mely9216
    @mely9216 2 หลายเดือนก่อน +35

    MOST UNDERRATED MATH TEACHER

    • @aashsyed1277
      @aashsyed1277 2 หลายเดือนก่อน +1

      Exactly

    • @vishalmishra3046
      @vishalmishra3046 2 หลายเดือนก่อน

      He is awesome - not only in Maths but also as an inspiring teacher. Also his quality of chosen problems are genuinely challenging to solve, making them more fun to solve yourself.

  • @arthurkassis
    @arthurkassis 13 วันที่ผ่านมา +1

    The first time I saw your contents was some months ago and I liked it a bit, however, now I'm obsessed with it, you make the calcs in such a way that is impossible to dislike, also, the problems that you bring here are different from what we usually see at school. Thank you for what you've done with your videos.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +11

    You’re an amazing math teacher.

  • @njiles
    @njiles 2 หลายเดือนก่อน +3

    I spent a whole year at university studying simple group theory and modular arithmetic. And for some reason, even when I saw the word "divisible", I still got into mathematical induction. But the strangest thing is that I was very surprised when we turned 30 into -1. There seems to be nothing so surprising, I have done this a thousand times in the ring modulo. Moreover, I have just now made sure that -1 is divided with a remainder by 31, the same as 30 is divided with a remainder by 31 (because by definition there are no sign restrictions on the divisible). And I was still surprised. It even became sad somehow, because I realized how limited I could be in a thing that I seemed to know well. (When you came to modules, I even remembered the definition of division with remainder completely!).
    Have where to grow! Cool video!

    • @njiles
      @njiles 2 หลายเดือนก่อน

      I think this happened because I only divided numbers that were greater than the divisor.

    • @panjak323
      @panjak323 2 หลายเดือนก่อน

      I come from C land, where there is only remainder operator and not modulo.

  • @kianushmaleki
    @kianushmaleki 2 หลายเดือนก่อน +1

    Thanks. Your videos are so relaxing

  • @shaaravpatwardhan6790
    @shaaravpatwardhan6790 2 หลายเดือนก่อน +5

    Would love to see a video of you proving the same by induction

  • @maaikevreugdemaker9210
    @maaikevreugdemaker9210 2 หลายเดือนก่อน +1

    I did it fron the top of my head thanks to you!!!
    30 = -1 mod 31 so 30^odd will be -1 mod 31. Then 5^21 = 125^7 and 125 = 1 mod 31. So added together it's -1 mod 31 +1 mod 31=0 mod 31

  • @hrishikeshkulkarni8955
    @hrishikeshkulkarni8955 หลายเดือนก่อน

    Superb explanation ....Thank you ...
    Induction, binomial theorem did it for me, 30 = -1 (mod 31) and 5^3 = 1(mod 31) helped though.

  • @heheheheheheheheheheheheheheje
    @heheheheheheheheheheheheheheje 2 หลายเดือนก่อน +1

    Greetings from Brazil!

  • @jpl569
    @jpl569 2 หลายเดือนก่อน +6

    Very nice, really !
    For those who don’t know (or don’t like) modular arithmetics, there is a quite fast solution…:
    Noticing that 5^21n = 125^7n, we have :
    125^7n = (124 + 1)^7n = 31 X + 1 for an integer X, because in the binomial development of (124 + 1)^7n, all terms except 1^7n contain a power of 124 from 1 to 7n, and then contain 31.
    Same for 30^(10n + 1), we have :
    30^(10n + 1) = (31 - 1)^(10n + 1) = 31 Y - 1 for an integer Y, because in the binomial development of (31 - 1)^(10n + 1), all terms except (- 1)^(10n + 1) contain a power of 31 from 1 to 10n + 1, and then contain 31.
    Then : 30^(10n + 1) + 5^21n = 31 Y - 1 + 31 X + 1 = 31 (X + Y).
    Thanks for your interesting videos 🙂

    • @davez8816
      @davez8816 2 หลายเดือนก่อน +2

      Waou! this is really amazing jpl569: simply by looking at binomial expression it becomes really simple to understand. I see this shortens 2 main explanations in the modular arithmetics (for a and b with respective rems r1 and r2, when multiplying them in the same modular we got r1*r2 as remainders (through binomial development easy to see this) and for additions/substraction the remainders are also added. Thx

    • @jpl569
      @jpl569 2 หลายเดือนก่อน +1

      @@davez8816 Thanks to you... 🙂

    • @robertveith6383
      @robertveith6383 2 หลายเดือนก่อน

      You have exponents that need to be inside grouping symbols: 5^(21n), 125^(7n), etc.

    • @jpl569
      @jpl569 หลายเดือนก่อน

      @@robertveith6383 True, thanks !

    • @asimov2144
      @asimov2144 หลายเดือนก่อน

      Try that way but couldnt find the solution. Thx !

  • @nanamacapagal8342
    @nanamacapagal8342 2 หลายเดือนก่อน +1

    Attempt:
    Lemma: A = B mod N implies for any arbitrary whole M, A^M = B^M mod N.
    A = B + NQ for some integer Q.
    A^M = (B + NQ)^M
    = B^M + Choose(M, 1) * B^(M-1) * NQ + Choose(M, 2) * B^(M-2) * N^2 * Q^2 * ...
    All terms after the B^M have a factor of N and are thus 0 mod N.
    = B^M
    QED
    Main proof:
    N is divisible by 31 is the same as N = 0 mod 31.
    For N = 0: 30^1 + 5^0 = 31 = 0 mod 31.
    Assume 30^(10k+1) + 5^(21k) = 0 mod 31.
    Then, in mod 31:
    30^(10(k+1)+1) + 5^(21(k+1))
    = 30^(10k+11) + 5^(21k+21)
    = 30^(10k+1) * 30^10 + 5^(21k) * 5^21
    = 30^(10k+1) * (-1)^10 + 5^(21k) * (5^3)^7 (by lemma)
    = 30^(10k+1) * 1 + 5^(21k) * 125^7
    = 30^(10k+1) + 5^(21k) * 1^7 (by lemma)
    = 30^(10k+1) + 5^(21k) * 1
    = 30^(10k+1) + 5^(21k)
    = 0
    QED

    • @ruslandavidchack7295
      @ruslandavidchack7295 หลายเดือนก่อน

      Yes! Thank you! This lemma is essential to the proof, but he didn't explain it.

  • @XTRA14LIVE
    @XTRA14LIVE 2 หลายเดือนก่อน

    The problem involves proving that the expression 30^(10n+1) + 5^(21n) is divisible by 31 for any positive integer n.
    The easiest way to solve this problem is to use modular arithmetic, which involves working with the remainders of numbers when divided by a certain modulus.
    The key steps in the modular arithmetic approach are to express 30 and 5^21n in terms of their remainders when divided by 31, and then show that the sum of these remainders is always 0 modulo 31.
    The remainder of 30 when divided by 31 is -1, and the remainder of 5^21n when divided by 31 is 1, since 5^21 is congruent to 1 modulo 31.
    Combining these results, the expression 30^(10n+1) + 5^(21n) is always divisible by 31, as the sum of the remainders is always 0 modulo 31.

  • @Deccan5032
    @Deccan5032 2 หลายเดือนก่อน +1

    Thanks sir ♥️

  • @agytjax
    @agytjax 2 หลายเดือนก่อน +2

    I like when he does his trademark reaction at 2:21

  • @vishalmishra3046
    @vishalmishra3046 2 หลายเดือนก่อน

    *Generally* (N-1)^(odd number) = -1 mod N AND (mN+1)^(any positive integer) = 1 mod N.
    If N = 31, then N-1 = 30 and if m = 4 then mN + 1 = 4 x 31 + 1 = 124 + 1 = 125, so 30^(odd number) = -1 mod 31 and 125^(any positive integer) = +1 mod 31.
    So, *Generally* 30^(2u+1) + 5^(3v) = -1 + 1 = 0 mod 31 for all positive integers u and v.
    In this problem, u = 5n = any multiple of 5 and v = 7n = any multiple of 7. Since u and v are still integers, so 30^(2 x 5n + 1) + 5^(3 x 7n) = -1 + 1 = 0 mod 31.

  • @AmlanSarkar-wr2pr
    @AmlanSarkar-wr2pr 2 หลายเดือนก่อน +8

    I did it using congruence modulo,
    We know aΞ0(mod a) using this property,
    31Ξ0(mod 31)
    31 = 30 + 1
    30 Ξ -1(mod 31)
    30^(10n+1) Ξ -1(mod 31)
    Since 10n+1 is odd
    Now, 5³ = 125 when divided by 31 it gives remainder 1.
    5³ Ξ 1(mod 31)
    (5³)⁷ Ξ 1⁷(mod 31)
    5^(21n)Ξ1(mod 31 )
    We know another property a Ξ n (mod m) and b Ξ c(mod m) then this implies (a+b) Ξ (n+c) (mod m)
    Therefore, 30^(10n+1) + 5^(21n)Ξ0(mod 31)
    Hence, 31 | 30^(10n+1) + 5^(21n)
    This proves 30^(10n+1) + 5^(21n) divisible by 31.
    [Note:-Sir I solved the problem before starting the video].
    Sir,let me know if I did the right approach and my steps were correct or not as I am doing congruence modulo in my classes.

    • @PrimeNewtons
      @PrimeNewtons  2 หลายเดือนก่อน +2

      Correct!

    • @AmlanSarkar-wr2pr
      @AmlanSarkar-wr2pr 2 หลายเดือนก่อน

      @@PrimeNewtons Thank you Sir.🙏🙏

    • @absolutezero9874
      @absolutezero9874 2 หลายเดือนก่อน

      @@PrimeNewtons
      No reply
      Just ignore
      Like most TH-camr
      👎🏼👎🏼👎🏼

  • @divyanshugoel1943
    @divyanshugoel1943 2 หลายเดือนก่อน +1

    Another possible approach could be to proceed via the principle of mathematical induction (PMI)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 หลายเดือนก่อน

    3^{10n+10n ➖}+{1n+1n ➖ }+105n=3^{20n^2+2n^2}+105n=3^22n^4={66n^4+105n}=171n^5 3^57n^5 3^19n^5 3^19^1n^5 3^1^1n^5 3^1n^5 3^1n^5^1 3^1n^1^1 3n^1 (n ➖ 3n+1).

  • @Techwithcrash
    @Techwithcrash 2 หลายเดือนก่อน

    Sir thumbnail kis application se banate ho

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +2

    Prove that 30^(10n+1)+5^(21n) is divisible by 31 I could use modular arithmetic.

  • @kailasnathastro
    @kailasnathastro 2 หลายเดือนก่อน

    Excellent 👍❤

  • @KamalAzhar-t7q
    @KamalAzhar-t7q 2 หลายเดือนก่อน

    Modular arithmetic is very useful to solve divisibility problems. 👍

  • @TheOlops
    @TheOlops 2 หลายเดือนก่อน +1

    I find Newtons so relaxing to watch.

  • @louis-paulhayoun2002
    @louis-paulhayoun2002 2 หลายเดือนก่อน

    i loved it !

  • @massimosoricetti9028
    @massimosoricetti9028 2 หลายเดือนก่อน

    Nice trick!

  • @Metaverse-d9f
    @Metaverse-d9f 2 หลายเดือนก่อน

    In modulo 31, the expression=(31-1)^(10n+1)+(5^3)^7n≡(-1)^(10n+1)+(31*4+1)^7n≡(-1)+(1)^7n≡0, since 31 divides 0, the proof is completed.

  • @ChristopherBitti
    @ChristopherBitti 2 หลายเดือนก่อน

    This simplifies to solving for which n we get (-1)^(10n + 1) = -1 (mod 31). Multiplying both sides by -1 we get that we want to solve (-1)^(10n + 2) = 1 (mod 31). Since 10n + 2 is always even, this is always true.

  • @vikramanbaburaj525
    @vikramanbaburaj525 2 หลายเดือนก่อน

    I simple logic in modular arithmetic can solve insanely complex problems if properly understood!

  • @happyhippo4664
    @happyhippo4664 2 หลายเดือนก่อน

    I would have tried induction, because I am not that well versed in modulo arithmetic. And I'd still be trying to do it hours after you were done.

  • @Uranyus36
    @Uranyus36 2 หลายเดือนก่อน

    for any number n, it's expressed as kq + r for some k,q and remainder r. then,
    we say n is congruent to r (mod q). therefore,
    10 is congruent to -1 (mod 11) because 10 = 1x11 - 1, where n = 10, k = 1, q = 11 and r = -1

  • @Metaverse-d9f
    @Metaverse-d9f 2 หลายเดือนก่อน

    8:43 it should be a congruent sign.

    • @himmelsdemon
      @himmelsdemon 2 หลายเดือนก่อน

      No. This is just rewriting the equation. You are not using modular arithmetic at this point.
      However, at 09:03, it should be.

  • @Carmine-h4o
    @Carmine-h4o 2 หลายเดือนก่อน

    Cool thank you

  • @jamesharmon4994
    @jamesharmon4994 2 หลายเดือนก่อน

    I accept everything you say as fact, but modular arithmetic is new to me. I would have appreciated a demonstration that 1^n mod 31 will always be 1 no matter what integer power n is.

    • @GhostEmblem
      @GhostEmblem 2 หลายเดือนก่อน

      He doesnt ever say 1=1^n mod 31. When I learnt modular maths we did the order different we just replaced the divide with mod and put the remainder after the = sign. For example:
      10 mod 5 = 0 (10 / 5 has 0 remainder)
      10 mod 4 = 2 (10 / 4 has 2 remainder)
      I found this much more intuitive compared to his way of writing it.
      10 = 0 mod 5
      10 = 2 mod 4
      I think if you go over the video I think if you go over the video with what he wrote as 10 = remainder mod divisor it will make more sense I dont really like his way of writing it and in programming, how I learned, it is written as: numerator mod divisor = remainder.

  • @marcgriselhubert3915
    @marcgriselhubert3915 2 หลายเดือนก่อน

    30 is congruent to -1 mod 31, so (30)^(10.n +1) is congruent to (-1)^(10.n +1) mod 31, so it is congruent to -1 mod 31.
    (5)^(21.n) = (125)^(7.n). As 125 is congruent to 1 mod 31, then (5)^(21.n) is congruent to (1)^(7.n) mod 31, so it is congruent to 1 mod 31.
    Now the sum (30)^(10.n +1) + (5)^(21.n) is congruent to -1 + 1 = 0 mod 31, and the problem is finished.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 is congruent to 2 mod 4.

  • @Deccan5032
    @Deccan5032 2 หลายเดือนก่อน

    Can't we solve this using Binomial Theorem???

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    30 is congruent to -1 mod 31.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    5 is congruent to 5 mod 31

  • @bluesbertje
    @bluesbertje 2 หลายเดือนก่อน

    Replace 30 with (31-1) and 5^3 with (4x31 + 1) … and then it follows almost immediately

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 is congruent to -1 mod 11.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    5^2=25 is congruent to -6 mod 31

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 mod 4 = 2

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 is congruent to 0 mod 2.

  • @tmrapper6378
    @tmrapper6378 2 หลายเดือนก่อน +1

    Jee level question

  • @VincentFort-oj8kg
    @VincentFort-oj8kg 2 หลายเดือนก่อน

    that's mean that all numbers written as 30^(x*n +1)+5^(3y*n) are divisible by 31 ? with x,y and n integers

    • @larswilms8275
      @larswilms8275 2 หลายเดือนก่อน +1

      Since 5^3 mod 31 is congruent to 1, 5^(3y*n) mod 31 is also going to be 1 no matter the y or n.
      But for 30^(x*n+1) mod 31 to be congruent to -1 x*n+1 needs to be an odd integer. therefor x*n needs to be an even integer. Which means x/n = 2k or n/x = 2k where k is and integer. Since multiplication is communitive we can assume without loss of generality that n>x and n/x = 2k -->
      n = 2kx --> x*n = 2kx^2, this shows that x needs to be a whole number or a fraction of a/sqrt(k) where a is an integer, otherwise 2kx^2 is not a whole even number.
      If these requirements are not met for x then 30^(x*n+1) mod 31 can be anything

  • @benshapiro8506
    @benshapiro8506 2 หลายเดือนก่อน

    lol, i was today yrs old when i learned that congruence equivalence symbol takes precedence over the arm.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 mod 2 = 0

  • @lalbi-x6z
    @lalbi-x6z 2 หลายเดือนก่อน

    Newtons is the equivalent of picasso but for maths.

  • @ChinmayPlays
    @ChinmayPlays 2 หลายเดือนก่อน

    Under 2hrs - - >

  • @rkumar.lnct24
    @rkumar.lnct24 2 หลายเดือนก่อน

    Technically expressing remainder in negative is not correct. The only law which governs division is that remainder should be greater than or equal to zero and less than divisor. If it is not followed then the division can never arrive at certain decision as every one has their own way of defining remainder and quotient for ex 8 divided by 3 , I can say 2 as remainder and 2 as quotient but someone can say -1 as remainder and 3 is quotient which will make the divison indeterminate. So please refrain from saying we can go with negative remainders . Hope you will take it positively.

    • @luisaleman9512
      @luisaleman9512 2 หลายเดือนก่อน +2

      You're not understanding correctly the meaning of congruence, saying A≅B (mod n) doesn't necessarily means that if you divide A by n the remainder is B, it means that if you divide A by n and B by n you'll get the same remainder. Example: 14≅10 mod 4, because if you divide 14 by 4 and 10 by 4 you get a remainder of 2 in both cases.

  • @anestismoutafidis4575
    @anestismoutafidis4575 หลายเดือนก่อน

    {n:X(n) | X/31}ℝ 𝕃 {x/31}ℝ
    30^(10•1/31+1)+5^(21•1/31)
    30^(10/31+1)+5^(21/31)=
    30^1,3225 +5^0,677=89,84+2,973=92,813
    92,813÷31=2,99 n=1/30,93
    30^(1/30,93+1)+5^(21/30,93)=93,075
    93,075÷31=3,00 n=1/30,93;
    X=3,00 [proven successful]

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 is congruent to 1 mod 9.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    10 is congruent to 10 mod 11.