Lec 27: Vector fields in 3D; surface integrals & flux | MIT 18.02 Multivariable Calculus, Fall 2007

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 พ.ย. 2024

ความคิดเห็น • 61

  • @alexhudson502
    @alexhudson502 2 ปีที่แล้ว +12

    Lecture 1: Dot Product
    Lecture 2: Determinants
    Lecture 3: Matrices
    Lecture 4: Square Systems
    Lecture 5: Parametric Equations
    Lecture 6: Kepler's Second Law
    Lecture 7: Exam Review (goes over practice exam 1a at 24 min 40 seconds)
    Lecture 8: Partial Derivatives
    Lecture 9: Max-Min and Least Squares
    Lecture 10: Second Derivative Test
    Lecture 11: Chain Rule
    Lecture 12: Gradient
    Lecture 13: Lagrange Multipliers
    Lecture 14: Non-Independent Variables
    Lecture 15: Partial Differential Equations
    Lecture 16: Double Integrals
    Lecture 17: Polar Coordinates
    Lecture 18: Change of Variables
    Lecture 19: Vector Fields
    Lecture 20: Path Independence
    Lecture 21: Gradient Fields
    Lecture 22: Green's Theorem
    Lecture 23: Flux
    Lecture 24: Simply Connected Regions
    Lecture 25: Triple Integrals
    Lecture 26: Spherical Coordinates
    Lecture 27: Vector Fields in 3D
    Lecture 28: Divergence Theorem
    Lecture 29: Divergence Theorem (cont.)
    Lecture 30: Line Integrals
    Lecture 31: Stokes' Theorem
    Lecture 32: Stokes' Theorem (cont.)
    Lecture 33: Maxwell's Equations
    Lecture 34: Final Review
    Lecture 35: Final Review (cont.)

  • @milleskov6124
    @milleskov6124 3 ปีที่แล้ว +8

    Merci Denis ! Im a very old Danish lady and i adore your expressions ❤️ Regarding math ofc and youll be proud i understand❤️

  • @ryanbennett2910
    @ryanbennett2910 9 ปีที่แล้ว +18

    this is really amazing for students today. i wish i could rewind my current lectures

    • @Ramix09
      @Ramix09 9 ปีที่แล้ว +2

      +Ryan Bennett You can if you record them :P

    • @TonyG-n1m
      @TonyG-n1m 2 หลายเดือนก่อน

      @@Ramix09 nah shamelessly suggesting a criminal offense is wild

  • @Lahzer
    @Lahzer 14 ปีที่แล้ว +17

    that guy, Denis Auroux, is a genius in mathematics!

  • @siddharthachaganti5639
    @siddharthachaganti5639 3 ปีที่แล้ว +10

    i am currently engineering first year . after i get a job i will definetely donate to mit ocw

    • @EmpyreanLightASMR
      @EmpyreanLightASMR 6 หลายเดือนก่อน

      have you donated yet

    • @SPRINGGREEN813
      @SPRINGGREEN813 3 หลายเดือนก่อน

      @@EmpyreanLightASMR bro is in the 4th year, he can't

    • @EmpyreanLightASMR
      @EmpyreanLightASMR 3 หลายเดือนก่อน

      @@SPRINGGREEN813 omg you're right 🤥

    • @SPRINGGREEN813
      @SPRINGGREEN813 3 หลายเดือนก่อน

      @@EmpyreanLightASMR Bro what are you doing? Btech or BS?

  • @AnandVL
    @AnandVL 11 ปีที่แล้ว +4

    It is flux ACROSS the surface.. (hence it's integrated over F.n) means that flux is maximum when the normal vector of the surface is parallel to the vector field.

  • @Arycke
    @Arycke 5 ปีที่แล้ว +3

    @4:39 there is an error for those who are hard of hearing. Pho should be "rho" the Greek letter. The captions are absolutely greatly appreciated by myself and many others. Thank you to those who put in that work on this channel.

  • @yonatanable
    @yonatanable 13 ปีที่แล้ว +10

    Lec 27 is so interesting

  • @lucastorres12
    @lucastorres12 10 ปีที่แล้ว +11

    Great lecturer!

  • @imegatrone
    @imegatrone 12 ปีที่แล้ว +3

    I Really Like The Video Vector fields in 3D; surface integrals and flux From Your

  • @marknewman7962
    @marknewman7962 3 ปีที่แล้ว +2

    if you are attracted to heavy mathematical physics all these theorems and techniques are absolutely necessary. Fluid dynamics done in tensors makes this look easy.

  • @denden4455
    @denden4455 3 ปีที่แล้ว

    this guy is awesome

  • @eddiemundo
    @eddiemundo 15 ปีที่แล้ว +3

    Better than my prof.

  • @dtwc4
    @dtwc4 13 ปีที่แล้ว

    @shuffledream nope, maybe a bit too late but he did mean tangent. take a look at the first example he did ~18mins. The vector field is parallel to the normal but the answer isn't zero.
    and any 2 perpendicular vector dot each other would give zero, so that should explain 14:27 as well

  • @leredsock
    @leredsock 4 ปีที่แล้ว +4

    Denis: "In case you don't see it..."
    Me: By Jove, you've read my empty blank mind.

  • @joebrinson5040
    @joebrinson5040 2 ปีที่แล้ว

    Thanks MIT

  • @athenanguyen1290
    @athenanguyen1290 6 ปีที่แล้ว +36

    When you're 100% screwed for finals....

  • @amarparajuli692
    @amarparajuli692 8 ปีที่แล้ว +4

    please also write what is in the recitation of each video when you update the next time .

  • @not_amanullah
    @not_amanullah 4 หลายเดือนก่อน

    This is helpful ❤️🤍

  • @not_amanullah
    @not_amanullah 4 หลายเดือนก่อน

    Thanks ❤️🤍

  • @SphereofTime
    @SphereofTime 3 หลายเดือนก่อน

    32:26 not line but surface integral, 2variable, flux

  • @liteonbeta
    @liteonbeta 14 ปีที่แล้ว

    @sahookah because proving is math and knowing the prove helps you understand the theorem

  • @gogetasaiyan5756
    @gogetasaiyan5756 11 ปีที่แล้ว +2

    This video gave me TREMENDOUS AMOUNT OF KNOWLEDGE!!! I liked it very much,but one thing:Why don’t they use dusters instead of keep on changing the Blackboards?(Just asking in a leisurly way).

    • @N.N1997
      @N.N1997 ปีที่แล้ว +1

      Probably so that he can pull up previous boards as a reference. (Ik it's been 9 years heh)

  • @Atlas-ds6yv
    @Atlas-ds6yv 7 ปีที่แล้ว +2

    Wow♡♡
    Thank you

  • @HiiPPi3
    @HiiPPi3 11 ปีที่แล้ว +4

    mhömhömhö i am a french güy. Actually this is just the video i needed right now.

  • @felsiq
    @felsiq 5 ปีที่แล้ว +4

    that cameraman job tho

  • @MamaLuigi908
    @MamaLuigi908 4 ปีที่แล้ว

    Camera man should zoom out and hold it steady on what the prof is writing on the blackboard.

  • @raycosm
    @raycosm 13 ปีที่แล้ว

    @shuffledream I'm pretty sure he meant parallel, but no one bothered to correct him.

  • @shawnnyhus2193
    @shawnnyhus2193 9 ปีที่แล้ว +14

    black boards looking for a good home.

  • @Juxtaroberto
    @Juxtaroberto 11 ปีที่แล้ว +2

    So that any slow writers have time to finish copying it down for their notes.

  • @bigbawsdogg
    @bigbawsdogg 13 ปีที่แล้ว

    how come in the first example of the sphere F.nhat = a and not 1/a and in the second example H.nhat = z^2/a instead of az^2

  • @amarparajuli692
    @amarparajuli692 8 ปีที่แล้ว

    while explaining flux in his 2nd question. the force was only directed towards the z- axis ;
    the question is if we look physically doesn't it happens that the flux is zero , as the amount of flux entering is also leaving . please explain

    • @davemorris9811
      @davemorris9811 8 ปีที่แล้ว

      +Amar Parajuli No, because the sphere is centered at the origin, so the F vector in this case points in the negative z direction for the bottom half of the sphere.

    • @debendragurung3033
      @debendragurung3033 7 ปีที่แล้ว +1

      Well we are not measuring divergence here.

  • @TonyG-n1m
    @TonyG-n1m 2 หลายเดือนก่อน

    nah it's the fact that the camera man missed the miss

  • @200katzen
    @200katzen 2 ปีที่แล้ว

    Where can I see the solutions to the problem sets? Thanks!

  • @debendragurung3033
    @debendragurung3033 7 ปีที่แล้ว +1

    can someone shed a light on how is nds = dxdy @47:00

    • @Ptoad
      @Ptoad 7 ปีที่แล้ว +3

      Not sure if this makes sense to you, but the way I think about it is like this:
      You have z = f(x, y), and this gives rise to the level curve F(x, y, z) = f(x, y) - z = 0.
      We know that the gradient of a scalar function is normal to its level curves, so the gradient of F(x, y, z),
      Grad(F) = [f_1(x, y), f_2(x, y), -1] will be normal to the surface defined by the function z = f(x, y).
      The function F(x, y, z) will be a scalar valued function of three variables, so it will be a 4D surface, which is very hard to visualize. You can however compare it to, say, the half sphere z = sqrt(x^2 + y^2), and how it relates to its level curves x^2 + y^2 = C^2. The gradient of z will be normal/perpendicular to the level curves for appropriate x and y.
      One, possbily easier, way to looks at it is to look at the vectors [1, 0, f_1(x, y)], which when projected onto the xy-plane, is parallel to the x-axis with slope f_1(x, y) and [0, 1, f_2(x,y)], a line parallel to the y-axis with slope f_2(x, y). If you take the cross product, you'll end up with a new vector that's perpendicular to both of the aforementioned vectors, normal to the surface z = f(x, y).

    • @debendragurung3033
      @debendragurung3033 7 ปีที่แล้ว +2

      kjQtte thanks . But I found he explained it at the beginning of next video

    • @Ptoad
      @Ptoad 7 ปีที่แล้ว +1

      I didn't realize. Good luck with your studies!

    • @rishavdhariwal4782
      @rishavdhariwal4782 5 หลายเดือนก่อน

      @@Ptoad thanks really great use of level curves and grad vector. One thing I am still confused about is what you found with this is just the normal vector (if you scale it by its magnitude) not ndS but the answer is coming to be exactly what professor said to be the value of ndS. How is the grad vector taking in consideration of dS. can you please explain this?

  • @jacksonmadison9994
    @jacksonmadison9994 2 ปีที่แล้ว

    15 years later, but the cameraman did not do a good job on this particular lecture. Most of the time the camera was too far zoomed in to see all of the notes on each blackboard slide. Previous lectures did a much better job of zooming out to see the full picture.

    • @darioinsi9370
      @darioinsi9370 ปีที่แล้ว

      What didn't you see here? Everything is clear

  • @liteonbeta
    @liteonbeta 14 ปีที่แล้ว

    @sahookah Because proving is math.

  • @shawnnyhus2193
    @shawnnyhus2193 9 ปีที่แล้ว

    flux it continuity

  • @SphereofTime
    @SphereofTime 3 หลายเดือนก่อน

    2:59

  • @360-t5s
    @360-t5s 5 ปีที่แล้ว

    It’s ok to put khoo lol

  • @dheerajkulmi8827
    @dheerajkulmi8827 4 ปีที่แล้ว

    👍👍👍👍👍

  • @EliotMcLellan
    @EliotMcLellan 6 ปีที่แล้ว +2

    The comments are edu canned laughter,not as smart as they need!!

  • @ArnoldSommerfeld
    @ArnoldSommerfeld ปีที่แล้ว

    MIT OCW is free, so there is that.
    Otherwise, it is overrated.

  • @XxPlayMakerxX131
    @XxPlayMakerxX131 5 ปีที่แล้ว

    ك