Functional Analysis Overview

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ธ.ค. 2024

ความคิดเห็น • 97

  • @robertschlesinger1342
    @robertschlesinger1342 6 ปีที่แล้ว +49

    Your overview videos are not only great introductions for the uninitiated, but are excellent reviews for those needing a refresher on the subject. Please keep posting overview videos. You are providing a valuable contribution to the mathematics and science communities.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +4

      Thanks so much!!!! 😄

  • @dhaka_mathematical_school
    @dhaka_mathematical_school 4 ปีที่แล้ว +6

    Incredible! The most efficient one hour I spent on TH-cam. Thanks so much, Dr. Peyam. You're awesome.

  • @ReCaptchaHeinz
    @ReCaptchaHeinz 5 ปีที่แล้ว +12

    Thank you!! I am studying maths, and this gave me a quick reminder of some definitions n theorems. You are a very nice person, and you make the world better.

  • @benjaminbrat3922
    @benjaminbrat3922 6 ปีที่แล้ว +4

    So nice, as always!
    50 min of functional analysis is just what I needed =)

  • @WhattheHectogon
    @WhattheHectogon 6 ปีที่แล้ว +62

    "Alright, thanks for watching!"
    No, thank you!

  • @likestomeasurestuff3554
    @likestomeasurestuff3554 4 ปีที่แล้ว +1

    Thanks! And let me point out, that the friendly atmosphere you have makes the topic even more appealing than it is for itself already.
    19:45 bless you, by the way

  • @Newtonissac6
    @Newtonissac6 6 ปีที่แล้ว +3

    I was having a rough day. Came home to 50 mins of Dr. Peyam reviewing functional analysis. A very satisfying end to an otherwise rough day. Thanks.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว

      Awwww, glad I could make your day!!!

  • @gregwong9205
    @gregwong9205 4 หลายเดือนก่อน

    The material certainly did not excite me on first encounter but your enthusiasm is so infectious. Am reviewing this material to properly understand the mathematical spine of quantum mechanics and you’ve inspired me to take it back up with a different attitude. Thanks professor!

    • @drpeyam
      @drpeyam  4 หลายเดือนก่อน

      Thanks so much!!!! 😊😊

  • @SlipperyTeeth
    @SlipperyTeeth 6 ปีที่แล้ว

    This is the single greatest video I've seen in the past 3 years.

  • @ucojq
    @ucojq 5 ปีที่แล้ว +1

    Great 3000ft overview! It's so easy to get lost in the trees of functional analysis (e.g. which results hold for p=1 or infinity). Super helpful!

  • @scose
    @scose 6 ปีที่แล้ว

    This video is great for researchers in other fields who have encountered functional analysis "in the wild" but never studied it yet. Thanks!

  • @RS-vw1ny
    @RS-vw1ny 4 ปีที่แล้ว +1

    Thank you for the video
    Engineering student here (2nd year) and considering taking a functional analysis module available in a Master's program that I'm interested in. This video was very helpful since I wanted to know the main topics of functional analysis

  • @TheMauror22
    @TheMauror22 6 ปีที่แล้ว

    Anyone else whatched this until the end like me? Damn! cool video Dr peyam!

  • @tofu8676
    @tofu8676 6 ปีที่แล้ว +17

    heard a good joke in my last lecture
    what is a yellow, complete and normed vektorspace? a Bananach space

  • @Songvbm
    @Songvbm ปีที่แล้ว +1

    Dr. Peyam, I am one of your subscribers, who has fallen in love with math after watching your approach to mathematics. I am currently studying functional analysis for my masters and I would love it if you kindly consider to suggest some comprehensive books in functional analysis that contain topological and measure theoretic preleminaries, normed spaces, topological vector spaces, banch algebra, operator theory, hilbert & sobolev spaces, distribution theory, harmonic analysis, integral equations, functional equations, c*-algebras etc in one volume. Thank you for this overview, it is valuable for my learning.

    • @drpeyam
      @drpeyam  ปีที่แล้ว +2

      I love functional analysis by Brezis

    • @Songvbm
      @Songvbm ปีที่แล้ว +1

      @Dr Peyam thank you Sir very much.

  • @duckymomo7935
    @duckymomo7935 6 ปีที่แล้ว +3

    Yay I’ve always been curious about functional analysis

  • @MichaelRothwell1
    @MichaelRothwell1 6 ปีที่แล้ว +1

    Thanks, Dr. Peyam, I really appreciated this. It took me way back to when I did my PhD in operator algebras, specifically C*-Algebras.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +1

      OMG, do you know Marc Rieffel? I took functional Analysis with him at Cal, as well as C* algebras

    • @MichaelRothwell1
      @MichaelRothwell1 6 ปีที่แล้ว

      @@drpeyam I don't know Marc Rieffel, but I knew his PhD supervisor, Richard Kadison, as I spent a year visiting University of Pennsylvania whilst a PhD student (I was based at Manchester University). Alas Kadison died in August. Kadison and Ringrose wrote the well known Fundamentals of the theory of operator algebras. And Ringrose was my supervisor's supervisor, working at Newcastle University, where I did my post doc.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +1

      Yeah, I’ve heard, may he Rest In Peace 😢

  • @TheWombatGuru
    @TheWombatGuru 5 ปีที่แล้ว

    Had my first lecture in functional analysis today, and it wasn't really clear to me what functional analysis was about. Thanks to this video I now kind of know what I'm doing, and I understand the proofs! Thanks Dr. Peyam!

  • @dibeos
    @dibeos 4 ปีที่แล้ว

    I have a question though...
    We saw that the differentiation linear transformation is not continuous, but if we have f,g real functions, it is true that:
    (a*f + b*g)’ = a*f’ + b*g’ , for a,b constant. Doesn’t it imply continuity of the differentiation linear transformation?

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +3

      No, linearity doesn’t imply continuity in infinite dimensions

  • @duncanw9901
    @duncanw9901 6 ปีที่แล้ว

    Only just done calculus 3 but watched every minute. Also I think calling functional analysis a sub-field is an understatement. Hilbert spaces are in just about everything!

  • @demidevil666
    @demidevil666 5 ปีที่แล้ว +4

    I love your enthusiasm. :D

  • @sanjursan
    @sanjursan 3 ปีที่แล้ว

    I concur with everyone else, this is really good stuff!

  • @NoNTr1v1aL
    @NoNTr1v1aL 3 ปีที่แล้ว +1

    You are my saviour.

  • @ecologypig
    @ecologypig 2 ปีที่แล้ว +2

    Great introduction! Full of intuition and motivating examples -- I think these are the stuff that many non-mathematicians can remember in the long run. Would it be possible to do a series of videos on functional analysis?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      Perhaps I may interest you in my PDE playlists?

    • @ecologypig
      @ecologypig 2 ปีที่แล้ว

      @@drpeyam let me check them out! Thanks!

  • @nikre
    @nikre 6 ปีที่แล้ว

    do you by any chance also follow generative models in machine learning? it would have a huge audience if you grounded the abstract proofs in say Wasserstein GAN or improved training articles.

  • @orenfivel6247
    @orenfivel6247 4 ปีที่แล้ว

    Hi Dr Peyam @Dr Peyam, can u solve this convex function problem [written in latex] ? PLZ 🙏
    One is seeking an example of a function $f:\mathbb{R}^2
    ightarrow \mathbb{R}$ so that: \\
    $f \in C^k k\geq 2, \frac{\partial f}{\partial x_1}
    eq \frac{\partial f}{\partial x_2}$ \\
    $f$ is globally quasi-convex and at no point convex.\\
    In addition, there exists another function $g:\mathbb{R}
    ightarrow \mathbb{R}$, $g\in C^k, k\geq 2$,
    monotonically increasing, so that $g \circ f$ is globally strictly convex.
    If possible, find such $f$ and $g$. If impossible, explain why.

  • @simasam9253
    @simasam9253 4 ปีที่แล้ว

    Do you have a full course online for functional analysis?

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว +1

      Not really but check out the book by Brezis, it’s very good

  • @peppybocan
    @peppybocan 6 ปีที่แล้ว +1

    Any book recommendation for functional analysis?

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +3

      Yes! My favorite one is the functional Analysis book by Brezis (freely available, I think), but also Lax is great, and so is Stein and Shakarchi

  • @estebanlopez1701
    @estebanlopez1701 3 ปีที่แล้ว

    thank you, sir. Could you do one for harmonic analysis, please?

  • @sarasara2818
    @sarasara2818 5 ปีที่แล้ว

    Hi Mr i have a question off topic please I'm searching for an explicit
    formula of this spaces
    $$C^{4+\alpha}(\overline{\Omega})$$
    plz any one have an answer help me

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Your space is the set of functions that are 4 times differentiable, and whose 4th derivative is Holder continuous of order alpha, that is |f””(x) - f””(y)|

  • @aymanlakehal8225
    @aymanlakehal8225 5 ปีที่แล้ว +2

    amazing introduction , you squeeze 3 months in 49 min 🙏

  • @davidkwon1872
    @davidkwon1872 4 ปีที่แล้ว

    44:50 Hilbert Space; it has dot product.

  • @harikishan5690
    @harikishan5690 หลายเดือนก่อน

    wow this is awesome🔥

  • @AbhishekThakur-xc9wp
    @AbhishekThakur-xc9wp 2 ปีที่แล้ว

    Thank you so much Sir . Please suggest some good books of functional analysis . I'm beginner & I'm really motivated by your Lectures. It looks easy now . I never try to understand before but your way of teaching is outstanding.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว

      I like the book by Brézis a lot

  • @saitaro
    @saitaro 6 ปีที่แล้ว +2

    Now I watch Peyam in 60 fps. So dynamic... woooh!

  • @kittensarecute93
    @kittensarecute93 3 ปีที่แล้ว

    Thanks for the overview. :)

  • @analysealgebre6723
    @analysealgebre6723 6 ปีที่แล้ว

    what a wonderful video, thanks a lot

  • @zoltankurti
    @zoltankurti 6 ปีที่แล้ว

    After this video, I challange you to make a mathematically rigorous series on quantum mechanics.

  • @MaggieRoara
    @MaggieRoara 3 ปีที่แล้ว

    This is magical !

  • @davide467
    @davide467 6 ปีที่แล้ว

    This is pure gold

  • @Bignic2008
    @Bignic2008 5 ปีที่แล้ว

    In the proof that bounded and continuous are equivalent, I thought that delta might depend on x? Don't you need to know that T is uniformly continuous to conclude that delta is independent of x?

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      That’s the beauty of it, in functional continuity is the same as uniform continuity

    • @Bignic2008
      @Bignic2008 5 ปีที่แล้ว

      @@drpeyam Ah so continuous linear functionals are always uniformly continuous? That's so cool! Thanks for the reply, I had no idea. Functional analysis truly is heaven for analysts.

  • @abhishekchatterjee7184
    @abhishekchatterjee7184 3 ปีที่แล้ว

    This is very good.

  • @Goofy_Ahw
    @Goofy_Ahw 5 ปีที่แล้ว

    Please make a lecture about soboleve space

  • @ashikak5743
    @ashikak5743 4 ปีที่แล้ว

    Sir, please suggests a best functional analysis book

    • @drpeyam
      @drpeyam  4 ปีที่แล้ว

      Brezis

  • @harrisonbennett7122
    @harrisonbennett7122 4 ปีที่แล้ว

    What level of my degree would I study this? It's very interesting buy I have only just started analysis and group theory. :(

  • @Linkarlo_ti_ta_thes
    @Linkarlo_ti_ta_thes 6 ปีที่แล้ว

    Hey Peyam :)
    Are you planning to make a video about Ito Formula and stochastic differential euqations?

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว

      Great idea! Also great username 🙂

    • @Linkarlo_ti_ta_thes
      @Linkarlo_ti_ta_thes 6 ปีที่แล้ว

      Great! thank you :)
      Viele liebe Grüße aus Deutschland !

  • @davidkwon1872
    @davidkwon1872 4 ปีที่แล้ว

    16:55 no sup for you! He is not only good at teaching mathematics. Making people jaw dropping is his second nature.

  • @cedricp.4941
    @cedricp.4941 6 ปีที่แล้ว

    Thank you for the video!

  • @purim_sakamoto
    @purim_sakamoto 3 ปีที่แล้ว

    冒頭3分しか見てないけど、え、ノルムドベクタースペース+コンプリート=バナッハスペースなのん それだけだったの???

  • @TheRedfire21
    @TheRedfire21 6 ปีที่แล้ว

    peyam you got a favorite book on this subject?

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว

      Yep, the book by Brezis. Lax is good too, and so is Stein & Shakarchi

  • @willnewman9783
    @willnewman9783 6 ปีที่แล้ว

    At the end, you kept saying "in the separable case," but most Hilbert spaces aren't separable, so these results are very limited

  • @davidkwon1872
    @davidkwon1872 4 ปีที่แล้ว

    24:48 See? This is the best dropping..

  • @oraz.
    @oraz. 6 ปีที่แล้ว

    I wish I had time to only watch these Peyams

  • @isaacnewton1545
    @isaacnewton1545 6 ปีที่แล้ว

    @23:50 You said if V = V** then V is reflexive ! This is wrong , you are missing something ! Actually the isomorphism that makes this equality , it really matters.

    • @drpeyam
      @drpeyam  6 ปีที่แล้ว +1

      Interesting, you’re right! Learned something new today :)

  • @Mathpress
    @Mathpress 5 ปีที่แล้ว

    Awesome

  • @pol...
    @pol... 5 ปีที่แล้ว

    This is gold

  • @MrTanorus
    @MrTanorus 5 ปีที่แล้ว

    19:45 24:50 27:13 35:35

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว +1

      MrTanorus Hahahahahahaha

  • @Jaylooker
    @Jaylooker 4 ปีที่แล้ว

    Nice

  • @elini3211
    @elini3211 4 ปีที่แล้ว

    Thankssssssss

  • @paololeonetti8329
    @paololeonetti8329 5 ปีที่แล้ว

    The correct velocity is 1.25 :D

    • @drpeyam
      @drpeyam  5 ปีที่แล้ว

      Hahaha

  • @mlbusinesstv2486
    @mlbusinesstv2486 4 ปีที่แล้ว

    Thank You very much! No soup for you😂😂

  • @pronaybiswas7524
    @pronaybiswas7524 3 ปีที่แล้ว

    Gem

  • @6612770
    @6612770 6 ปีที่แล้ว

    I'm hanging out for your 31.4159265359...th Birthday Special show.
    Should be a doozie!!

  • @1622roma
    @1622roma 4 ปีที่แล้ว

    Thank You, but I was looking for a video on functional analysis in systems engineering.

  • @6612770
    @6612770 6 ปีที่แล้ว

    I'm hanging out for your 31.4159265359...th Birthday Special show.
    It should be a doozie!!

  • @null2694
    @null2694 6 ปีที่แล้ว +2

    nth

  • @forgetfulfunctor2986
    @forgetfulfunctor2986 5 ปีที่แล้ว

    HECK YES MY DUDE

  • @bandamkaromi
    @bandamkaromi 6 ปีที่แล้ว

    I'm Third. :-)

  • @AsadAli-cr3ve
    @AsadAli-cr3ve 6 ปีที่แล้ว

    1st