10 Machine Learning: Ridge Regression

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2025

ความคิดเห็น • 8

  • @AR-dn9ej
    @AR-dn9ej 4 ปีที่แล้ว +1

    Fantastic Video!! Thank you so much!

  • @patite3103
    @patite3103 3 ปีที่แล้ว

    Great video! @ 20:14 you give the mean of x as the result but I think it should be the mean of y! I was confused when you say this term cancels out and this one too when lambda = infinity, in fact it's an approximation by neglecting the two elements mentioned since we know that the coefficients would tend asymptotically towards zero! @ 14:02 i = 1,...,n samples --> these are observations within a given sample!

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  3 ปีที่แล้ว

      Howdy Patite, Thank you! You are correct. I will add to my notes and update the next version! I appreciate, Michael

  • @hamedgholami3664
    @hamedgholami3664 3 ปีที่แล้ว

    nice job explaining the intuition on math but where can I find rigorous proof of bias-variance tradeoff in ridge regression? I mean the equations of bias-variance tradeoff where lambda is present. thanks again.

  • @rohitjajee5246
    @rohitjajee5246 4 ปีที่แล้ว +1

    Great video, but at 20.4, I think as lambda increases model complexity decreases therefore Variance decreases and bias increases.

    • @GeostatsGuyLectures
      @GeostatsGuyLectures  3 ปีที่แล้ว

      Howdy Rohit, I made the change for the next version. A mix up on the slide but correct elsewhere. Thank you for the feedback, Michael

  • @cechgyt8336
    @cechgyt8336 4 ปีที่แล้ว +1

    I didn't know Virgil Van dick was so good in machine learning.