Square Root of Imaginary Number

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 374

  • @AndyMath
    @AndyMath  หลายเดือนก่อน +122

    I wanted to make 2 comments about this video.
    1. I intentionally let A and B be complex numbers to show that when everything is simplified it leads to the same solutions, I thought that was such a cool conclusion. A lot of people are upset I did this, I should have expressed more clearly what I was doing.
    2. The final solution should have only been the principle root. I was so excited about A and B being complex detail, that I forgot to restrict the final solution.

    • @ZincAddict
      @ZincAddict หลายเดือนก่อน +4

      what is a principle root?

    • @SverreHvammenJohansen
      @SverreHvammenJohansen หลายเดือนก่อน +2

      Finding these roots by viewing i as a point in the plain is much simpler

    • @AwesomeDomi1
      @AwesomeDomi1 28 วันที่ผ่านมา

      @@ZincAddictbasically just the positive root

  • @ritwikgarg
    @ritwikgarg หลายเดือนก่อน +797

    Andy at the wedding altar: “This looks important, let’s put a box around it”

    • @Qermaq
      @Qermaq หลายเดือนก่อน +47

      What about the honeymoon?
      Actually, this morbidly applies to a funeral even better.

    • @ritwikgarg
      @ritwikgarg หลายเดือนก่อน +12

      @ I can just picture him saying this at a funeral 🤣

    • @jackmandu
      @jackmandu หลายเดือนก่อน +16

      @@Qermaq- after they consummate he’ll give a very concerted “how exciting.”

    • @Qermaq
      @Qermaq หลายเดือนก่อน +14

      @@jackmandu Hey, honey, this looks like a fun one.

    • @deltalima6703
      @deltalima6703 หลายเดือนก่อน +9

      The honeymoon: How exciting. A box. I bet this is important.

  • @jvn11_official
    @jvn11_official หลายเดือนก่อน +397

    Who knew the 9th letter of the alphabet, so innocent looking, held so much power...

    • @FurbleBurble
      @FurbleBurble หลายเดือนก่อน +2

      Eldritch Abomination.

    • @CosmicHase
      @CosmicHase หลายเดือนก่อน

      I hate _i_

    • @wildfire_
      @wildfire_ หลายเดือนก่อน +5

      a look into a plane beyond mortal perception. imaginary, if you will.

    • @JahanaraBegum-yf9zv
      @JahanaraBegum-yf9zv หลายเดือนก่อน +2

      well 9th letter of english alphabet or 9th letter of greek ‘iota ‘😢

    • @FundamSrijan
      @FundamSrijan หลายเดือนก่อน +1

      *Iota
      *Greek letter

  • @rainerzufall42
    @rainerzufall42 หลายเดือนก่อน +33

    Just one little flaw here: √i is per definitionem ONLY the principal root (1 + i) / √2.
    If you'd ask for x² = i, you'd get both solutions ± (1 + i) / √2 = ± (1 + i) * √2/2.

  • @snaukball8764
    @snaukball8764 หลายเดือนก่อน +81

    or you could just say it's a 45° and 225° rotation on a unit circle in the complex plane.
    This is because 45+45=90, and 225+225=450=360+90.
    Then just do sin and cos of those and you'll get the values which is why you also have sqrt(2)/2, which is sin and cos (45°), as well as -sqrt(2)/2, which is sin and cos (225°)

    • @DoubleQCubed-d7o
      @DoubleQCubed-d7o หลายเดือนก่อน

      hi

    • @DoubleQCubed-d7o
      @DoubleQCubed-d7o หลายเดือนก่อน

      what day it it going

    • @tomsweder7459
      @tomsweder7459 หลายเดือนก่อน +8

      Bam! That's it.
      Complex numbers are the bridge between algebra and geometry.

    • @studypurposeonly69
      @studypurposeonly69 28 วันที่ผ่านมา +1

      Interesting way to put it

  • @eduhund21
    @eduhund21 หลายเดือนก่อน +54

    I am so glad I learned how to use the polar form of writing imaginary numbers. Great Video!

    • @tchevrier
      @tchevrier หลายเดือนก่อน +3

      exactly

    • @TonyFisher-lo8hh
      @TonyFisher-lo8hh หลายเดือนก่อน +6

      Using the polar form drops the entire calculation to four or five lines compared to the video's interminable length.

    • @Kero-zc5tc
      @Kero-zc5tc หลายเดือนก่อน

      ⁠@@TonyFisher-lo8hhtbf this video is padded out by at least 4 minutes, right from his expansion of a+bi squared he took a detour onto a much longer calculation journey. Frankly if you get a^2-b^2=0 it’s obvious that a=b (or a=-b) and you can sub it in to 1=2ab to get 1=2a^2 solve for a and as a=b you also get b.

  • @mathopo237
    @mathopo237 หลายเดือนก่อน +132

    There is one detail that should be pointed out in your calculations. The value a is only allowed to be real because it is the real part of the complex number a + bi. Therefore, when you get to the equation a^2 = -1/2, this equation should be rejected because it is not possible that a real number squared equals a negative number. In fact, this is why you get two extra redundant answers. The answer is not wrong, but the math used to get to the answer can lead to some misunderstanding about the differences in the complex and real numbers. Note: I didn´t read all the comments before writing mine, but there were other comments about this exact same issue)

    • @felipelatimansilvadebrito4879
      @felipelatimansilvadebrito4879 หลายเดือนก่อน +4

      i thought he forgot about it

    • @Mothuzad
      @Mothuzad หลายเดือนก่อน +7

      I wasn't going to comment on this issue at all, but then it took up so much time in the back half of the video.
      One thing to add: It's not incorrect to allow a and b to be complex numbers, but you're guaranteed to get all the solutions with less work if you force them to be real. This is because a+bi can already represent every possible complex number when a and b are real. Allowing complex a and b will only get you numbers a+bi that would have been represented regardless.

    • @mathopo237
      @mathopo237 หลายเดือนก่อน +3

      @@Mothuzad By definition, a and b are real. To make a and b complex is not helping in that situation and make the problem more 'complex'... When we do math, we have to stick with a definition. This is why sometimes we have to be careful with recreational maths; sometimes the person using the maths will abuse the definition and might gives the illusion that it can be done in other context too...

    • @Orrinn123
      @Orrinn123 หลายเดือนก่อน +2

      I’m not so sure about this comment. You’re relying on the assumption that a must be a real number but I’m fairly certain that’s not true.
      If a were a complex number and b was anything at all then the term a+bi would still be a complex number, which was our only real “requirement” or assumption. We didn’t try to claim that a or b were real numbers, only that a+bi is a complex number

    • @dzendys_
      @dzendys_ หลายเดือนก่อน

      ​@@Orrinn123You're right in one thing being "not sure". If you look up the definition of complex number, it is defined as "a,b are real numbers". You cant define complex number with the the definition of complex number. And yes, in this video, he did it wrong in some way and still got right solution.

  • @Lolly_Bingo69
    @Lolly_Bingo69 24 วันที่ผ่านมา +8

    7:51 you can just put the ± symbol and parenthesis

  • @ElectricGamer_YT
    @ElectricGamer_YT หลายเดือนก่อน +81

    Bro did it the unnecessarily hard way

    • @sandpaper7781
      @sandpaper7781 หลายเดือนก่อน +9

      My thoughts exactly.
      Easier than explaining the complex logarithm.

    • @TheFirstWoffle
      @TheFirstWoffle หลายเดือนก่อน +1

      I was gonna use the argand diagram way of reasoning

    • @HaniaTauqeer-c2k
      @HaniaTauqeer-c2k หลายเดือนก่อน

      @@sandpaper7781what’s one of those?

  • @RealMesaMike
    @RealMesaMike หลายเดือนก่อน +14

    I think there should be only one answer, since the radical symbol is defined to give the Principal Root and not all roots.

    • @deltalima6703
      @deltalima6703 หลายเดือนก่อน +1

      Defined by whom?

    • @asdbanz316
      @asdbanz316 หลายเดือนก่อน +5

      @@deltalima6703 a root as a function must have only 1 output
      The equation should be x^2 = i to have 2 different answers (which is x = +- root of i)

    • @baconheadhair6938
      @baconheadhair6938 หลายเดือนก่อน

      nah

    • @RealMesaMike
      @RealMesaMike หลายเดือนก่อน

      @@deltalima6703 General consensus.
      From WIkipedia: "Principal square root: Each positive real number has two square roots, one positive and the other negative. The square root symbol refers to the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part."

    • @nbooth
      @nbooth หลายเดือนก่อน +3

      @@deltalima6703 By near universal convention.

  • @1375soroush
    @1375soroush หลายเดือนก่อน +82

    Dude, why going the hard way? Just use Euler’s formula: sqrt(i)=sqrt(e^(i*90))= e^(i*90/2)=e^(i*45)=cos(45)+i*sin(45) and the rest is history

    • @DTier_fish
      @DTier_fish หลายเดือนก่อน +7

      Cant wait till i go to college and see this!

    • @briogochill6450
      @briogochill6450 หลายเดือนก่อน +1

      But you will "lose" a solution.

    • @OmerNachmaniZ
      @OmerNachmaniZ หลายเดือนก่อน +29

      But for that you may prove Euler formula (which is one of the most beautiful things I’ve learned at uni) but this require knowledge of Taylor series and proving it (with all the relevant calculus), it’s very tedious.
      We can either skip these steps and say “just use Euler” without showing why we can use Euler, but it feels less like mathematical method and more like magic, or choose a different path from the ground up.
      What I like in the video is that it isn’t require any background or mathematical assumptions besides basic algebra.

    • @1375soroush
      @1375soroush หลายเดือนก่อน +5

      @@OmerNachmaniZ I guess I didn’t view it from this side. Agreed!

    • @Qermaq
      @Qermaq หลายเดือนก่อน +5

      @@DTier_fish It's not hard. Graph complex value z as (a + bi) on the complex plane. The distance to the origin is sqrt(a^2 + b^2) and that's r, the modulus. The angle from the positive real axis is theta, the argument, and that's atan(b/a). Once you know the modulus and the argument, you can say that z = re^(i*theta). And then you can use all the log stuff with e on complex numbers. So if z = 1 + sqrt(3)i, the modulus (r) is 2 (1^2 + sqrt(3)^2), and the argument (theta) is pi/3 (atan sqrt(3)/1). So z = 2e^(i * pi/3). Have fun!

  • @wes9627
    @wes9627 หลายเดือนก่อน +44

    Draw a unit circle centered on the origin of the complex plane. i is at the top of the circle at its intersection with the imaginary i axis. i is 90° or π/2 radians around the circle from the positive real axis. Also i=e^{iπ/2)=cos(π/2)+i*sin(π/2). √i is π/4 around the unit circle or √i=e^{iπ/4)=cos(π/4)+i*sin(π/4)=√2/2+i*√2/2=(√2/2)(1+i).

    • @casaroli
      @casaroli หลายเดือนก่อน +1

      Yeah. Geometrically it’s easy to see the 1/√2.

    • @IdMonster00
      @IdMonster00 หลายเดือนก่อน +2

      More obvious to use polar form.

    • @rbettsx
      @rbettsx หลายเดือนก่อน

      Beat me to it 😊. I, too, find the geometric interpretation much simpler. Does it constitute a proof? I think so… worth a follow-up, IMO.

    • @casaroli
      @casaroli หลายเดือนก่อน +1

      @ if you use axioms of geometry or other proven theorems, yes. It’s a proof.

    • @IdMonster00
      @IdMonster00 หลายเดือนก่อน

      @@rbettsx I don't think a proof was asked for.

  • @BrotherhoodEssentials
    @BrotherhoodEssentials หลายเดือนก่อน +105

    What a beautiful evening to absolutely fry my brain cells 😭😭😭😭

    • @simplylmao
      @simplylmao หลายเดือนก่อน +2

      It was basic addition multiplication and some substitution, what exactly fried your head?

    • @therealnonoo
      @therealnonoo หลายเดือนก่อน +8

      @@simplylmao the fact that you are dealing with imaginary numbers and solution, if someone who never ever met something like this before it can be overwhelming for them

    • @Spodogo
      @Spodogo หลายเดือนก่อน

      ​@@therealnonooYes

    • @simplylmao
      @simplylmao หลายเดือนก่อน +2

      @@therealnonoo as long as you know i = root of -1, everything else is really just squaring and multiplying really.
      Ofc i see how it can be challenging for someone new to maths

    • @3bitclash463
      @3bitclash463 หลายเดือนก่อน +1

      it aint even bad at all, it is so simple.

  • @wildfire_
    @wildfire_ หลายเดือนก่อน +14

    you can also notate it as just ±(1+i)(√2/2)

    • @huseynhuseynli2922
      @huseynhuseynli2922 หลายเดือนก่อน +1

      ok einstein we get it, you're smart

    • @holyisme6377
      @holyisme6377 หลายเดือนก่อน

      @@huseynhuseynli2922 su

    • @Zkflames
      @Zkflames หลายเดือนก่อน

      shouldnt sqrt(x) give only the principal value here... which should never be ngetaive? so iin this case its only the positive option... for example...you say sqrt(36)=6 and not ±6... correct me if im wrong plz

    • @alclelalclel
      @alclelalclel หลายเดือนก่อน

      @@Zkflames ± is usually used with complex numbers to avoid confusion. its normal for most operations with them to have 2 answers

    • @impydude2000
      @impydude2000 หลายเดือนก่อน +3

      @@Zkflames if you solve for sqrt(x) you only get the principal value however solving for x^2 = 36 (for example) you would get x = ±6

  • @JasonMoir
    @JasonMoir หลายเดือนก่อน +11

    So many boxes, so many colors.

  • @foogod4237
    @foogod4237 29 วันที่ผ่านมา

    I really like your style of working through things. The visual equations are easy to follow and show all the steps, while not ending up in pages and pages of equations at the end, and I love that you are very careful not to skip over even the simple steps, which makes it really easy to see that there's really no magic in there.
    The solution at the end could actually just be written as ±(√2/2 + (√2/2)i). This is consistent with the fact that we already know that when taking a square root of something, the result should always come out to be "plus or minus (something)". (And then, as you said in the comment, since the radical symbol means specifically the principal root, you should technically just take the positive one as the answer to this question.)

  • @pedroamaral7407
    @pedroamaral7407 หลายเดือนก่อน +30

    Oh my gosh, he did so many unnecessary or even contradictory processes. It can be done in 30 seconds: a² = b², therefore a = ±b. Since 2ab = 1, then a = b. Substituting, we have 2a² = 1 and then, a = ± sqrt(2)/2. Since a = b, sqrt(i) = sqrt(2)/2 + i.sqrt(2)/2 or -sqrt(2)/2 -i.sqrt(2)/2

    • @WhovianRanger42
      @WhovianRanger42 หลายเดือนก่อน +2

      Verdade, muito mais simples!

    • @Adel69702
      @Adel69702 หลายเดือนก่อน +2

      Shush

    • @justyceleague698
      @justyceleague698 24 วันที่ผ่านมา +1

      There’s so much missing from that and it’s not an intuitive way to think about it

    • @pedroamaral7407
      @pedroamaral7407 24 วันที่ผ่านมา

      @@justyceleague698 What is missing?

  • @key_board_x
    @key_board_x หลายเดือนก่อน +2

    z = i ← this is a complex number
    The modulus of (i) is 1, so the modulus of √i is: 1^(1/2) = 1
    The argument of (i) is (π/2), so the argument of √z is [(π/2)/2], i.e. (π/4)
    Thus we can deduce that the first root of (i) is:
    z1 = 1.[cos(π/4) + i.sin(π/4)] → and to get the second root, we add an angle of (2π)/2, i.e. (π)
    z2 = 1.[cos{(π/4) + π} + i.sin{(π/4) + π}]
    It gives
    z1 = 1.[cos(π/4) + i.sin(π/4)]
    z1 = cos(π/4) + i.sin(π/4)
    z1 = [(√2)/2] + i.[(√2)/2]
    z1 = [(√2)/2].(1 + i)
    z2 = 1.[cos{(π/4) + π} + i.sin{(π/4) + π}]
    z2 = cos{(π/4) + π} + i.sin{(π/4) + π}
    z2 = - cos(π/4) - i.sin(π/4)
    z2 = - [(√2)/2] - i.[(√2)/2]
    z2 = - [(√2)/2].(1 + i)
    Summarize
    √i = ± [(√2)/2].(1 + i)
    √i = ± (√2).(1 + i)/2
    √i = ± (√2 + i√2)/2

  • @gtechxeditz_official
    @gtechxeditz_official หลายเดือนก่อน +2

    Girolamo Cardano(discovered imaginary numbers ) watching through that right door and saying
    " THIS guy is cooking "🤣🤣

  • @jjborenfff
    @jjborenfff หลายเดือนก่อน +3

    The way I got around understanding this, was to first to define i in exponential form and raising it to exponent 1/2. Then just redefine it to polar form.

  • @frozenBird925
    @frozenBird925 28 วันที่ผ่านมา

    His hotness is what carried me through this video. I'm glad I got to the end, though, because this is really interesting!

  • @MichaelGrantPhD
    @MichaelGrantPhD หลายเดือนก่อน +33

    I do not agree that this should result in two answers. When we write "x^2 = 4", then we do expect two answers, +2 and -2. But when we write "sqrt(4)", we expect just the positive square root; or in a complex context, the primary branch. Likewise, when we write "x^2 = i", we expect two answers, but "sqrt(i)" should have just one. It is commonly accepted that sqrt(2)(1+i)/2 is the primary branch we expect to keep.

    • @ricoseb
      @ricoseb หลายเดือนก่อน +3

      what determines the primary branch? acceptance in the community? or is there a mathematical reason (ie sqrt(x) for x>0 = something >0) ? do you take the one with the positive real?

    • @aldineisampaio
      @aldineisampaio หลายเดือนก่อน +1

      When dealing with complex numbers things gets a little crazy. When we have a square root, sure, since the second root will always be the first root multiplied by -1. But when we have cube roots, forth roots and so on, it is not so simple anymore. In the real world, makes sense a radical giving only one solution, but in complex world that is not very useful.

    • @aldineisampaio
      @aldineisampaio หลายเดือนก่อน +2

      @@ricoseb There is a mathematical reason. Is the root with the smallest positive angle in the polar form representation of the number. By the way, that reason have a curious implication: the principal cubic root of a negative real number is never a real number, because the real root would make a angle of pi and will aways exist a complex root with a smaller angle (pi/3). Because of that, Wolfram Alpha cannot plot certain graphs correctly when the function involves cubic roots, since it consider only the main branch of the radical.

    • @Qermaq
      @Qermaq หลายเดือนก่อน +3

      There are two schools of thought here, and both are valid. One carries the spirit of the square root bijection from real arithmetic and as you suggest considers the value with the smallest non-negative argument the principal and refers to that as the proper square root. The other, which is more prevalent, is that once we enter the complex world we dispense with the "one square root" idea and we say that all complex values have two square roots, three cube roots, etc. We still can identify the principal as above, but all values of the root are considered. Personally, I prefer the latter point of view, but I see logic in yours as well.

    • @mathopo237
      @mathopo237 หลายเดือนก่อน +2

      From a mathematical point of view, the guy from the video should be clear on how is the symbol sqrt(a + bi) is defined. In mathematics, it is fairly standard to use sqrt(a + bi) for the principal branch of the complex square root function and (a + bi)^{1/2} for the set-valued square root function (there will be two values as the output for the two roots). With that being said, we can infer directly from the video how he interpreted the symbol sqrt(i): he interpreted it as (i)^{1/2}. Hope this helps.

  • @hustledude
    @hustledude หลายเดือนก่อน

    The hard part a lot of times is how do you know what “looks important” and what doesn’t

  • @黃冠綸-y6q
    @黃冠綸-y6q 23 วันที่ผ่านมา

    兩種更快的方法:
    (1) 2:47 用 2ab=1, a=±b
    (2)複數平面的兩數相乘等同於長度相乘和角度相加,就像 i^2=-1, i^(1/2) 就是位於45°、長度1的複數
    (其實還有135°的,但因為要取正根所以不符合)

  • @afernandesrp
    @afernandesrp หลายเดือนก่อน +21

    But didn’t you define that “a” would be the real part and “b” the imaginary part? I assumed the first two answers would be excluded because of that. Although when you rearranged the answers were the same, the first two were “b+ai” instead of “a+bi.”

    • @gc6891
      @gc6891 หลายเดือนก่อน +4

      Yes, he should have excluded those answers.

    • @deltalima6703
      @deltalima6703 หลายเดือนก่อน +1

      Not true actually. He did sub them in properly, a and b are complex also, not real as you assumed.

    • @oliviervancantfort5327
      @oliviervancantfort5327 หลายเดือนก่อน +5

      @@deltalima6703I disagree, when the complex answer is defined as a+bi, a and b must be real. When you draw the complex plane, you don't expect each axis to be itself complex.

  • @Goldenbear6
    @Goldenbear6 หลายเดือนก่อน

    The definition of a complex number is z=a+bi where a,b belong to R. That would help simplify the equation a bit, since a^2>0 given a is a real number.

  • @m.h.6470
    @m.h.6470 หลายเดือนก่อน

    Given the same fraction in both, I would factor it out and write as (-√2 / 2)(1 + i) and (√2 / 2)(1 + i) making the solution literally ±(√2 / 2)(1 + i).
    But since √ generally means the principal root, meaning no negative values, the only actual solution should be (√2 / 2)(1 + i). The other one is an extraneous solution introduced by the squaring at the very beginning.

  • @quinsattorney
    @quinsattorney หลายเดือนก่อน

    I will take your word for it.

  • @denelson83
    @denelson83 21 วันที่ผ่านมา

    All you have to do is convert _i_ to its polar form. Then square-root the magnitude (which does nothing in this case) and divide the phase by 2, which gives you a complex number with a magnitude of 1 and a phase of π/4. Converting back to rectangular form gives sqrt(2)/2 + sqrt(2)i/2.
    To get the second solution, express i's phase as 5π/2. Then applying the square root operation will give you a complex number with a magnitude of 1 and a phase of 5π/4, which turns out to be the negative of the first solution, -sqrt(2)/2 - sqrt(2)i/2.

  • @theobserver9066
    @theobserver9066 หลายเดือนก่อน

    I went down into a "plotting complex numbers and its square roots in the complex plane" rabbit hole after watching this! Hoping you'll also make a short video on this pleeease

  • @atrus3823
    @atrus3823 หลายเดือนก่อน

    My favourite way to do this is use polar form of i = e^i(pi/2 + k2pi), for any integer k. Then sqrt(i) = i^(1/2) = e^i(pi/2 + k2pi)*(1/2) = e^i(pi/4 + kpi). This gives the same 2 solutions in the video plus infinite others. Though they’re all equivalent to one of the two in the video.
    Conceptually how I think about it is multiplying a complex number z by i is the same as rotating it by 90 degrees. Square root of x asks, “what number multiplied twice is the same as multiplying by x?” Combined: “what rotation can we apply twice to get a 90 degree rotation?” The obvious answer is 45 degrees, but also 225 degrees (225*2 - 360 = 90). Another way to find these is 2x = 90, 450, 810, … => x = 45, 225, 405, …

  • @pnachtwey
    @pnachtwey หลายเดือนก่อน +1

    You did it the hard way. There are two vectors. Both have a length of 1. Rotate the I vector half way to a angle of zero so the fist solution is cos(45 deg)+isin(45deg) . the other solution is to rotate I half way to zero deg counter clockwise.

    • @Orrinn123
      @Orrinn123 หลายเดือนก่อน +3

      Not really. He just did it the purely algebraic way (which I’m fairly certain is the method this channel almost exclusively uses for problems of this sort)

  • @axenking6085
    @axenking6085 หลายเดือนก่อน +1

    I just used the graph to do 45° on 1, to get a triangle where cos(45)=(√2)/2 and sin(45)=(√2)/2 for both a and b. Solved using the graph!

  • @AndreTewen
    @AndreTewen หลายเดือนก่อน +1

    2 remarks.
    sqrt(z) "represents" two values, because "sqrt" is not a function.
    By choice, decision has been taken to say that sqrt(z) is positive if sqrt(z) € |R.
    But if z is imaginary, for example z=i, sqrt(i) represents
    two values which are opposed.

  • @jimdotz
    @jimdotz หลายเดือนก่อน

    This community college math instructor is pleased to see so many alternative procedures to find the answer to sqrt(i) in the comments. Many of them come from principles and procedures that come from a moderately advanced study of complex numbers, but I don't think that's what the author is trying to do. It's pretty clear to me that he is showing a "first week" lesson to students who are just beginning to explore the novel thinking that accompanies an introduction to complex numbers. Kudos for an excellent use of technology to teach a detailed lesson in basic complex number procedures.

  • @Zopeee
    @Zopeee หลายเดือนก่อน

    I mean geometrically the answers also make perfect sense, as in both have a lenght of 1 and the first one is225° when you square it it means 2*225° =90° and 45° also squared 45*2=90°, which means both have a Rotation of 90° and length 1 which is just i or e^iπ/2

  • @ilanpi
    @ilanpi หลายเดือนก่อน

    The square root of i satisfies x^4 = -1, so factor x^4 + 1 = (x^2 - sqrt(2) x + 1)(x^2 + sqrt(2) x + 1) then solve each quadratic term for x, to get the square roots of i and -i.

  • @kenhaley4
    @kenhaley4 หลายเดือนก่อน

    Using the polar form of complex numbers this becomes a little easier. First of all, realize that multiplying 2 complex numbers in polar form can be done by multiplying their magnitudes and adding their angles. Knowing this, you can find the square root of a complex number by taking the square root of its magnitude and halving the angle.
    So, in this case, notice that i has a magnitude of 1 and an angle of 90 degrees (1/4 of the way around the unit circle) on the complex plane. To get the square root, we cut the angle in half (45 degrees or 1/8 of the way around the unit circle) and keep the magnitude (the square root of 1 is 1). This is a point on the unit circle 1 unit away from the origin at 45 degrees. Using the Pythagorean theorem, it's easy to see that the coordinates of this point would be sqrt(2)/2 in both the horizontal and vertical directions. That would be sqrt(2)/2 + sqrt(2)/2 i, which is one of Andy's results in this video.
    What about the other result? Notice that in polar form, the angle of i can also be thought of as 360 + 90 degrees (1 1/4 times around the origin), or 450 degrees. Half of that is 225 degrees (5/8 of the way around the unit circle). That's exactly opposite 45 degrees. So, it's just the negative of the first result, namely -sqrt(2)/2 - sqrt(2)/2 i, which is Andy's other result.

  • @American_Language
    @American_Language หลายเดือนก่อน +2

    this may be a long explanation, but this was really cool to watch :>

  • @DenHaag-q9s
    @DenHaag-q9s หลายเดือนก่อน

    can you solve this question please: Two circles, each with a radius of 2 cm, are tangent to each other. A line is drawn that is tangent to both circles. A third circle is then drawn so that it is tangent to both of the original circles and the line. Find the radius of the smaller circle.

  • @russianAABB
    @russianAABB 24 วันที่ผ่านมา

    basically britheguy but alot of headaches and brain damage

  • @pretzboy
    @pretzboy หลายเดือนก่อน

    This problem becomes trivial if you use phasors

  • @rennangandara7697
    @rennangandara7697 หลายเดือนก่อน +1

    Functions shouldn't have only 1 x value?

  • @TNTz1ooChannel
    @TNTz1ooChannel หลายเดือนก่อน

    You could also say plus or minus since the equations are similar

  • @windsu1382
    @windsu1382 หลายเดือนก่อน

    or you can use Euler formula: sqrt(i)=i^(1/2)=e^(π/2*1/2) or e^(5π/2*1/2) = e^(π/4) or e^(5π/4) =sqrt(2)/2+ sqrt(2)*i/2 or -sqrt(2)/2-sqrt(2)*i/2

  • @harriehausenman8623
    @harriehausenman8623 หลายเดือนก่อน

    I have never seen it explained so brilliantly. 🤗

  • @flavortucson5387
    @flavortucson5387 หลายเดือนก่อน +2

    Hi Andy, could you plot the solutions on the complex plane, please? I'm having a hard time picturing where they would be.

    • @darkcaste
      @darkcaste หลายเดือนก่อน

      You're having a hard time because he ignored the geometrical interpretation. They're on the unit circle, at 45° and -135°.
      Just think of it in polar form, z = r cis θ, squared that's just z² = r² cis 2θ.
      We know that i is on the complex unit circle, at 90°. So r² = 1 and 2θ = 90°, meaning that the solutions are also on the unit circle, and rotating through θ twice gets you to 90°.
      i.e. 45° or -135°.
      That's all there is to it. He did all that rigor and nicely animated algebra for something you can do in your head. That is, how do I turn twice to get to 90°?
      NB: I figured degrees would be more intuitive than radians for this comment

  • @SK-wi1cx
    @SK-wi1cx หลายเดือนก่อน

    ”I am going to solve this in 3, 2, 1.” ”How exiting!” Great rituals 😊. Thank you for exellent videos!

  • @DrSid42
    @DrSid42 หลายเดือนก่อน

    Very simple doing it geometrically in 2D vector space .. multiplication multiplies length of a vector and adds angles. Square root squares the length and divides the angle by two.
    So the first solution is obvious .. length 1, angle 45 degrees. The other is easy to miss, but once you realize there are many infinite many ways how to express an angle by adding 360 degrees, it's also simple.

  • @ianwoodward8324
    @ianwoodward8324 หลายเดือนก่อน

    "When dealing with imaginary numbers you can't combine them with real numbers".
    That's the whole point of imaginary numbers. When get squared they literally become reals.

  • @michellepopkov940
    @michellepopkov940 หลายเดือนก่อน

    Polar plots are the solution to a complex number function

  • @Berries1111_
    @Berries1111_ หลายเดือนก่อน

    aw man you almost got it, it's the principal root

  • @RyanSmith-lg1cn
    @RyanSmith-lg1cn หลายเดือนก่อน

    Cool now find the square root of that

  • @ericmiller6056
    @ericmiller6056 หลายเดือนก่อน

    Even easier than Euler's formula (although equivalent, really): just use the geometry of complex numbers on the unit circle. i = 90 degrees, so root i = 45 degrees. Done.

  • @tchevrier
    @tchevrier หลายเดือนก่อน

    it's good to see how the math works out like this. I find it very useful to use the the unit circle to understand complex numbers.
    what points when multiplied together rotate around to 0+1i? And the answer doesn't even need any calculations. sqrt2/2 + sqrt2/2 i, and -sqrt2/2 - sqrt2/2i.
    you can also use polar coordinates since they are easier to multiply and divide than cartesian coordinates. I = 1 @90degrees. So the answer is 1 @45 degrees and 1 @ 225 degrees.

  • @GamingDemiurge
    @GamingDemiurge หลายเดือนก่อน

    sqrt(i) = (e^i*(pi/2 +2*pi*n)^1/2 =(e^i*pi/4)*(e^i*n*pi) =
    n=0 => e^i*pi/4 = cos(pi/4) + i*sin(pi/4) = 1/sqrt(2) * (1 + i)
    n=1 => e^i*(pi/4 + pi) = cons(5pi/4) + i*sin(5pi/4) = - 1/sqrt(2) * (1 + i)
    n>1 repeat itself

  • @JimboSRP
    @JimboSRP หลายเดือนก่อน

    Or just write i in exponential (polar form) as exp[(\pi/2 + n 2\pi) i], n = 0, 1, 2,... Raise that to the power of 1/2 to find the square root, and crank the handle on n=0 and n=1 (n=2,3,etc just repeat the first two soluions).
    For n=0, S_0 = exp[(\pi/4) i]
    For n=1, S_1 = exp[(5\pi/4) i]
    If you need the solutiosn in rectangular form use euler's to get +/- 1/sqrt(2) (1+i)

  • @arkadioariatama2272
    @arkadioariatama2272 หลายเดือนก่อน

    so this video is basically talking about the root of imagination

  • @nourhatem6624
    @nourhatem6624 หลายเดือนก่อน

    why cant we say that root(i) = i^2* root(1) and root 1 is equal to 1 therefore root(i) is equal to i^2

  • @sarahmoodey5068
    @sarahmoodey5068 หลายเดือนก่อน

    Loved this video! What’s your favourite math concept to teach?

  • @michaelmounts1269
    @michaelmounts1269 หลายเดือนก่อน

    nice…also as i is a “rotator” (so to speak) the answer results in the intuitive 45 degree angle-vs i bring essentially a 90 degree angle (coordinate wise) I’m not very articulate this early…but I’m sure you catch my drift

  • @SillyPerrin
    @SillyPerrin หลายเดือนก่อน

    Putting i on the left of a fraction is confusing and makes it look like a mixed fraction.

  • @coolxplayer12
    @coolxplayer12 หลายเดือนก่อน

    That was a fantastic equation

  • @lediableenpersonne
    @lediableenpersonne หลายเดือนก่อน +2

    Just wondering, as √4 = 2 and √4 ≠ -2 because √ is always positive, isn't it the same thing for this ?
    I mean, I think (-√2/2 - √2/2i) is as wrong as -2 for √4

    • @aldineisampaio
      @aldineisampaio หลายเดือนก่อน

      Maybe. But I think that the rule of the radical having only one solution is not very useful with complex numbers. Specially with radical indexes bigger than 2 (cubic roots, forth roots, etc).

    • @nbooth
      @nbooth หลายเดือนก่อน

      @@aldineisampaio I'll repost what I wrote earlier: We need a way to say √2 and have it be different from -√2. We need a way to say √i and have it be different from -√i. We all agree that √2 + √3 + √5 + √7 is a single value, not 16 different values. We don't want it to suddenly become 16 different values when it's √-2 + √-3 + √-5 + √-7. We don't want √a + √b +√c + √d to be either 1, 2, 4, 8, or 16 values depending how many of a, b, c, and d are real.
      So we have conventions. √ denotes the principle root. It's always defined, even with complex numbers. There are different conventions, and you are free to choose whichever branch cut you like, as long as you are consistent, but in no case does √a is denote two or more values.

  • @gerard-nagle
    @gerard-nagle หลายเดือนก่อน

    Really cool, what software was used to create the equations? I guess PowerPoint for the animations

  • @francisgrizzlysmit4715
    @francisgrizzlysmit4715 หลายเดือนก่อน

    just express it in polar and it's easy i = e^(i*pi/2 + 2n*pi) so srt(i) = e^(i*pi/4 + n*pi) = cos(pi/4 + n*pi) + i sin(pi/4 + n*pi) = 1/srt(2) + 1/srt(2) * i, -1/srt(2) - 1/srt(2)
    so srt(2)/2 + srt(2)/2, -srt(2)/2 -srt(2)/2

  • @snapperhap
    @snapperhap 24 วันที่ผ่านมา

    2:29 that means abs(a)^2=abs(b)^2 wich also means abs(a)=abs(b)

  • @emelilukas8942
    @emelilukas8942 หลายเดือนก่อน

    By the way i is equal to e^((pi/2)*i) and squareroot of that is e^((pi/4)*i) and sqaureroot of that is e^((pi/8)*i) and so on. Assuming you only care about the principle root

  • @kunallatta5442
    @kunallatta5442 29 วันที่ผ่านมา

    (cos(2kπ+π/2)+sin(2kπ)+π/2)^1/2 then apply de-movire's theorem

  • @topquark22
    @topquark22 หลายเดือนก่อน

    This is easy. By Euler's formula, i = e^i(pi/2). So sqrt(i) = e^i(pi/4) = sqrt(2)/2 + i sqrt(2)/2

    • @atrus3823
      @atrus3823 หลายเดือนก่อน

      You’re missing that i = e^i(pi/2 + k2pi) for any integer k. So, sqrt(i) = e^i(pi/4 + kpi), which gives the 2 solutions from the video (as well as infinite others).

  • @lamorkitu
    @lamorkitu หลายเดือนก่อน

    Simple, use argument π÷2 and module is 1, exp(iπ÷4), develop with trigonomic expression and developp again
    √2/2 +√2/2 i
    Works also with arg of the solution π/4, -3π/4

  • @KunlunTan
    @KunlunTan หลายเดือนก่อน

    Taking the square of sqrt(i) introduces an extra incorrect answer of sqrt(i). sqrt(i) is a number and not a function with a variable, it cannot be equal to two different numbers.
    Think about if we want to calculate sqrt(1). If we take the square of it, we will end up with 1 and -1 are two "answers", but -1 != sqrt(1)

  • @3bitclash463
    @3bitclash463 หลายเดือนก่อน

    I just don't understand how anyone can assume that square root of i will be a complex number in the form a+bi

  • @ricardoguzman5014
    @ricardoguzman5014 หลายเดือนก่อน

    Much easier way to solve. Multiply by 2/2 inside the square root:
    √i=√(i * 2/2)=
    √(2i)/√2=
    √(1+i)²/√2=
    (1+i)/√2=[(1+i)/√2]*(√2/√2)=
    (√2/2)(1+i).

  • @mancerguy1841
    @mancerguy1841 หลายเดือนก่อน

    I think its easier both conceptually and algebraically to express the imaginary unit i in polar form as 1cis(pi/2) and then apply DeMoivre's Theorem to get +-1cis(pi/4) giving +-([sqrt2 + sqrt2*i]/2)

    • @baconheadhair6938
      @baconheadhair6938 หลายเดือนก่อน

      no

    • @baconheadhair6938
      @baconheadhair6938 หลายเดือนก่อน

      manyvpeople including me don’t know what that is
      if he just pulled some theorm out of nowhere without deriving it it would feel like it came from nothing
      the way the video is organized allows people to fully understand what is happening

    • @baconheadhair6938
      @baconheadhair6938 หลายเดือนก่อน

      unobvious assumptions from unobvious theorems ruin math videos because they just make it worthless to the average viewer

    • @mancerguy1841
      @mancerguy1841 หลายเดือนก่อน

      @@baconheadhair6938 I understand what you mean but equally you should have learnt imaginary numbers in such a way that you also learnt the polar and euler forms to express complex numbers. Because the usual representation a + bi is really bad and doesnt segue well into other ideas whereas the polar and euler forms can help you grasp a better understanding of stuff like euler's identity and trig expressions.
      Furthermore, DeMoivre's Theorem is the most convenient way to find roots and also square complex numbers and is only applicable in polar / euler form, sooo those forms are almost always better i believe.
      I think the video shouldve actually like, explained what the imaginary unit is, what complex numbers are, why you express them as a + bi, what the polar / euler forms are and why theyre easier to use here than using the rectangular form. And then solved the question through the application of DeMoivre's Theorem in polar coordinates because there are many many questions similar to this in calculus courses, such as "find the roots of unity of z^n = 1" that are ONLY solvable through DeMoivre's Theorem and polar/euler form.
      This video wouldve helped more with the conceptual understanding of complex numbers and how to solve questions surrounding them if it had gone more in depth imo

    • @baconheadhair6938
      @baconheadhair6938 หลายเดือนก่อน

      @@mancerguy1841 no i haven’t even learned complex numbers in school and im sure theres many others who haven’t either. if he just grazed over polar form and whatever the euler form is, it wouldn’t be as valuable to newcomers in this subject
      i think you’re right though that it would be useful if he went in depth about each of these forms, but to do it effectively in a way that doesnt require extensive background knowledge would be lengthy . also even if that theorm is useful, it would still feel like magic if he didn’t derive it, even if he explained what it is

  • @edwardsong7628
    @edwardsong7628 หลายเดือนก่อน

    check: (√2/2 + i√2/2) (√2/2 + i√2/2) = 2/4 + i2/4 + i2/4 +i^2(2/4) = 1/2 +I1/2 + I/2 -1 = i
    -(√2/2 + i√2/2) -(√2/2 + i√2/2) = 2/4 + i2/4 + i2/4 +i^2(2/4) = 1/2 +I1/2 + I/2 -1 = i

  • @gayathrikumar5643
    @gayathrikumar5643 หลายเดือนก่อน +2

    What tool do u use for your videos

  • @brenbown
    @brenbown หลายเดือนก่อน

    you can figure out pretty early on that a=b

  • @aldineisampaio
    @aldineisampaio หลายเดือนก่อน

    Since a and b (of a + bi) are real numbers, there is no reason to consider the complex forth roots of 1/4 when calculating a or b.

  • @saityusufbulur3366
    @saityusufbulur3366 26 วันที่ผ่านมา

    Here's the fun part. Thinking the square root of i as a complex number like a+bi isn't actually an assumption, it is 100% truth. Square root of i must be a complex number because complex numbers are the largest set of numbers, any real or imaginary number is also a complex number. For example, 2 is a complex number because it can be written as 2+0i, 3i is a complex number because it can be written as 0+3i. Therefore, square root of any real or imaginary number must be something like a+bi.

  • @protocol6
    @protocol6 หลายเดือนก่อน

    1/√2=√2/2 (and, more generally, 1/√x=√x/x) so the original was just the complex conjugate of the right answer? Or more likely, someone just mixing up the principle square root with the other one. Interestingly, that wrong answer was the square root of -i.

  • @jim_showi
    @jim_showi หลายเดือนก่อน

    Could've posted this before my specialist maths exam

  • @RexxSchneider
    @RexxSchneider หลายเดือนก่อน

    First. let √i = a + ib where *a and b are real.* Now we can use your algebraic method, although i = e^(iπ/2), so √i = e^(iπ/4) = cos(π/4) + i.sin(π/4) = (1+i)/√2) is quicker.
    So i = a^2 - b^2 + 2abi. Equate real parts giving a^2 - b^2 = 0. So a^2 = b^2, hence a = ± b. Equate imaginary parts giving i = 2abi, therefore 2ab = 1.
    If a = b, then 2a^2 = 1, which makes a = √(1/2) and b = √(1/2) by the convention that the principal square root of a real is positive. So √i = (1 + i)/√2
    If a = -b, then -2a^2 = 1, leading to a being imaginary, which contradicts the initial condition. One solution and it doesn't take 7 minutes.

  • @roboutegulliman9286
    @roboutegulliman9286 29 วันที่ผ่านมา

    Could you not have used De Moivre’s Theorem

  • @redknight1871
    @redknight1871 23 วันที่ผ่านมา

    If only you have used Euler's formula you would've done it in 1 minute. Since √a = a^(1/2)
    And i=e^i(π/2 +2kπ)
    Then √i=e^i(π/2+2kπ)/2=e^i(π/4+kπ) while k is an integer
    Then we change the Euler's formula into an algebric one using the r(cos(theta)+isin(theta)) which will give us the same results you got. How simple and fast

  • @Rocknrolldaddy81-xy8ur
    @Rocknrolldaddy81-xy8ur 28 วันที่ผ่านมา

    What I don’t get is that, I often gets used a the Y coordinate on a 2D plain.
    So why wouldn’t just behave like 1 but in the y direction?

  • @sugamonogaijin
    @sugamonogaijin หลายเดือนก่อน

    isn't it faster to simply write i = e( i pi/2) ; if you want the sqrt, then i ^ (1/2) = e (i pi /2 + 2 k pi)^(1/2) = e ( i pi /4) for K=0 and e ( i 5 pi /4) for K = 1
    If you really, really really really want to write Cos pi/4 and sin pi/4 as sqr 2/2 that works 2. e ( i pi/4) is just a lot easier to visualize for students on the unit circle I'd say

  • @kelticlago
    @kelticlago หลายเดือนก่อน +5

    quand vous dites que sqr(i)=a+bi, vous signifiez que a et b sont réels, alors le cas a^2=-1/2 n'est pas recevable...

  • @rz8689
    @rz8689 หลายเดือนก่อน

    You shall not consider a2=-1/2 in the solution

  • @horrifichalo8430
    @horrifichalo8430 หลายเดือนก่อน

    If √i = x
    X^8 = i^4
    X^8 = 1
    Therefore x=1
    √i = 1
    Im pretty sure a few things are wrong . If there are any mistakes please tell me

    • @72.849
      @72.849 หลายเดือนก่อน

      x can also be i!!! i^8=1

  • @alyme_r
    @alyme_r หลายเดือนก่อน

    Just use De Moivre's theorem to find the roots of unity.

  • @jeffreyblack666
    @jeffreyblack666 หลายเดือนก่อน

    I would say you have found 2 solutions to the problem z^2=i, that is not finding the value of sqrt(i).
    If you are treating sqrt(z) as a function, it needs to have only 1 solution.

  • @kurtrosenthal6313
    @kurtrosenthal6313 หลายเดือนก่อน

    Very interesting, but what does it mean when it’s graphed?

    • @studypurposeonly69
      @studypurposeonly69 28 วันที่ผ่านมา

      In a complex plane, one number is at 45 degrees and the other at 225 degrees both of which when squared (angles add up) leads to 90 degree

  • @carly09et
    @carly09et หลายเดือนก่อน

    Root of i is the eighth root of 1 which is a ring.

  • @tau93
    @tau93 หลายเดือนก่อน

    I didn't like how you set out to find "a" and "b" to satisfy "a + bi", and found values for "a and b" that were imaginary. I thought coefficients a and b for a complex number had to be real numbers

    • @AndyMath
      @AndyMath  หลายเดือนก่อน

      I wanted to show that even if we don't set that restriction from the beginning, the complex a and b yield the same results.

  • @zircon256ua
    @zircon256ua หลายเดือนก่อน +11

    √i = √(√i) = 4th root of √-1

    • @fubaralakbar6800
      @fubaralakbar6800 หลายเดือนก่อน

      Okay, but you have to simplify that. I still haven't figured that out yet.

    • @manibabai2115
      @manibabai2115 หลายเดือนก่อน +1

      No they are not the same

    • @Renvil_
      @Renvil_ หลายเดือนก่อน +2

      ​@@manibabai2115 Square root of a square root is a hypercube root. They're correct.
      √x = x^(1/2)
      √(√x) = x^((1/2)*(1/2)) = x^(1/4) = ∜x
      So if [ x = i ] for √(√x), we get: √(√i) = ∜i

    • @RexxSchneider
      @RexxSchneider หลายเดือนก่อน

      No. i think you meant to write √i = √( √(-1) ) = 4th root of -1

  • @sortehuse
    @sortehuse หลายเดือนก่อน

    What is the Square Root of -i? Is it even possible?

  • @jessejordache1869
    @jessejordache1869 หลายเดือนก่อน

    ((sqrt(2) + i(sqrt(2)/4) For folks who don't like radicals in their denominators.
    I think. I remember doing it in my head during a smoke break at work once. If you know how to work in the complex plane, and that the principle cube root of -8 is NOT -2, but sqrt(3)i, then this is just basic complex arithmetic.
    i^i? Now that's hard.

  • @AMROx86
    @AMROx86 หลายเดือนก่อน

    Pro forgot De Moivre's formula😏

  • @GoodWill-s8j
    @GoodWill-s8j หลายเดือนก่อน

    Just use Euler's formula and call it a day!