Find missing values in data with Pandas | Beginner tutorial

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ม.ค. 2025

ความคิดเห็น • 24

  • @misraturp
    @misraturp  2 ปีที่แล้ว

    👉 Get your copy of the Pandas cheat sheet: misraturp.gumroad.com/l/pandascs

  • @misraturp
    @misraturp  2 ปีที่แล้ว +1

    What other data science tasks do you want to learn more about? Let me know and I can make a video on them too!

  • @berkbykc9151
    @berkbykc9151 2 ปีที่แล้ว +2

    It was one of the best quality content I've ever watched, real world examples are really valuable. Thank you for this video. 💫

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      That's great to hear Berk, thank you!

  • @mahmoudfadaly8074
    @mahmoudfadaly8074 9 หลายเดือนก่อน

    thank u saw much for this playlist especially the first two videos "data exploration & data cleaning ", u saved so much time for me and i learned alot .

  • @e.t.499
    @e.t.499 2 ปีที่แล้ว

    Hi from Holland.You are inspiring Misra.Basarilarinin devamini dilerim:)

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      Cok tesekkurler :)

  • @curtisjackson3377
    @curtisjackson3377 2 ปีที่แล้ว

    Hey Misra, I am loving and enjoying to learn from you. The way you help understand concepts, I adore it. Please keep doing your best and smile!
    P.S. I upgraded my Streamlit apps to a great deal after looking at your small yet powerful videos. All thanks to "Session State", because of which I found you.
    Cheers :)

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      That is great to hear Curtis, thank you! And good luck with your projects!

  • @cartoonchan182
    @cartoonchan182 2 ปีที่แล้ว

    the biggest plot twist of this year is at 2:32 .... for all this time i thought isnull() will show all null value(inclu. Na,Nan,none, etc) 👏👏 that's a useful information

  • @python2448
    @python2448 2 ปีที่แล้ว

    Thanks for sharing. Missing values is really a critical problem in data engineering which needs to be addressed as early as possible in the analysis chain.

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      Totally agree!

  • @sachinghutke9711
    @sachinghutke9711 2 ปีที่แล้ว

    Hi misra, I'm Sachin from India
    I love the way u teaching, it's incredible and helpful to me 😊

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      Glad to hear that

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 2 ปีที่แล้ว

    Hi Misra
    I am trying to write a code which gives missing values feature name and missing value count in form of dict, but mt code is not working.
    Kindly help.
    a = df.isnull().sum()
    miss = {}
    for i in range(len(a)):
    if a.values[i]>0:
    miss = {a.index[i] : a.values[i]}
    print(a.index[i])

  • @akhilp6263
    @akhilp6263 2 ปีที่แล้ว

    Could you please make a video on how to fill missing values effectively in such big data

    • @misraturp
      @misraturp  2 ปีที่แล้ว

      It's coming soon!

  • @alpcetinkaya3656
    @alpcetinkaya3656 2 ปีที่แล้ว

    Teşekkürler

  • @karteekmenda3282
    @karteekmenda3282 2 ปีที่แล้ว

    May be we can also use data['Column_Name'].value_counts(dropna = False) sometimes

  • @rishabh507
    @rishabh507 2 ปีที่แล้ว +2

    Encoding, discretitzation

  • @vashisht1
    @vashisht1 9 หลายเดือนก่อน

    This is the most irrelevant video on missing values. You didn't even talk about the categories of missing values mcar,mnar,mar . Neither u talked about mean mode median,ffill, bfill or drop or fillna...interpolate is another thing you did talk about..just money minded speaking about your course in end...so sad😢