Calculus 1: How to remember trig function derivatives

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 9

  • @bprpcalculusbasics
    @bprpcalculusbasics  ปีที่แล้ว

    Derivatives of ALL trig functions (proofs!)
    th-cam.com/video/IuClHA9VjDY/w-d-xo.html

  • @Pacvalham
    @Pacvalham ปีที่แล้ว +2

    2 (co)secants and 1 (co)tangent

  • @kevinpari9500
    @kevinpari9500 8 หลายเดือนก่อน +1

    love your haircut man!
    thanks for the math!

  • @joiboi69
    @joiboi69 ปีที่แล้ว +1

    thanks sir

  • @violetbob694
    @violetbob694 ปีที่แล้ว

    what about the inverse of these functions?

    • @ZGExtraDriveStorage
      @ZGExtraDriveStorage ปีที่แล้ว

      Isn't the inverse alr there?
      Like sin^-1 = csc
      cos^-1 = sec
      tan^-1 = cot

    • @zapaya_guy
      @zapaya_guy 6 หลายเดือนก่อน

      No, the -1 on the inverse function is on the operation itself, while the -1 on the reciprocal functions is on the outside. eg: sin^-1(x) = arcsinx, (sin(x))^-1=cscx

  • @_i_am_yours_tanmay_
    @_i_am_yours_tanmay_ ปีที่แล้ว +3

    Can you please solve 2^x + 3^x + 4^x = 5^x

    • @carultch
      @carultch ปีที่แล้ว +2

      There is no analytic solution. You can use Newton's method to narrow in on the solution.
      Shuffle everything to the left:
      2^x + 3^x + 4^x - 5^x = 0
      Let f(x) = 2^x + 3^x + 4^x - 5^x
      Take derivative:
      f'(x) = ln(2)*2^x + ln(3)*3^x + ln(4)*4^x - ln(5)*5^x
      Set up Newton's method, guessing x_0 = 2, and using it and its derivative as feedback to find the next x-value.
      x_nplus1 = x_n - f(x_n)/f'(x_n)
      n ____ x_n ____ f(x_n)_________f'(x_n)
      0_____ 2 ________ 4 __________ -5.395
      1_____ 2.741___-10.76 _______ -43.73
      2_____ 2.496___-2.568 _______ -24.34
      3_____ 2.391___-0.318 _______ -18.52
      4_____ 2.374___-0.007 _______ -17.69
      5_____ 2.373___-3.954E-06 ___ -17.66
      Solution: about x = 2.373