LightRAG: A More Efficient Solution than GraphRAG for RAG Systems?

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 63

  • @kai_s1985
    @kai_s1985 หลายเดือนก่อน +9

    Thanks so much! You are the best channel when it comes to RAG. Please keep informing us about the latest advancements in this field.
    I have played with GraphRag. It can be expensive if you have tons of data, but considering how cheap GPT-4o and GTP-4o-mini have become, the price is not the biggest concern at least for my use case. I processes more than a thousand page document with GPT-4o and it cost me cents. The biggest problem with MS GraphRag is the inference latency. It is not very practical if you want to build a chatbot based on this. Also, it is less customizable in my recent experience. Hope LightRag is better in terms of accuracy, customizability and inference speed.

  • @kenchang3456
    @kenchang3456 16 วันที่ผ่านมา +1

    Thanks for this. I was looking for a way to add to the KG without having to rebuild it. Crossing my fingers that this is it. And cheaper too 🙂

  • @johnkintree763
    @johnkintree763 หลายเดือนก่อน +9

    It looks like the pipeline is modular, and could work with different vector and graph databases.
    In the future, users could rate the responses, so highly rated responses could be stored and retrieved when similar queries are made by other users. Retrieving highly rated responses could improve overall system performance compared with generating responses for every query.
    Apply fast thinking instead of slow thinking when possible.

    • @KevinKreger
      @KevinKreger 3 วันที่ผ่านมา

      It is modular. For example, if you want to replace Textract with MinerU for doc/pdf parsing it would be very easy.

  • @FunDumb
    @FunDumb หลายเดือนก่อน

    Definitely want to learn more about lite rag. Cost was a hindrance with regular rag. 😊

  • @AndrewNanton
    @AndrewNanton หลายเดือนก่อน +3

    Pretty cool - if you do more with this, I'd love to see some experiements combining this with late chunking

    • @engineerprompt
      @engineerprompt  หลายเดือนก่อน +4

      good idea, when I get time, I want to implement a system that combines all these different approaches together.

    • @hiranga
      @hiranga หลายเดือนก่อน +1

      @@engineerprompt Has anyone recreated this in LangGraph or LangChain JS ?

  • @Imasoulinseoul
    @Imasoulinseoul 7 วันที่ผ่านมา

    Thank you heaps for the diagrams and explanations!

  • @CAPSLOCK_USER
    @CAPSLOCK_USER หลายเดือนก่อน +2

    such a great channel, thanks for this guide, i was just about to implement a knowledge base!

  • @yvescourtois
    @yvescourtois หลายเดือนก่อน

    Great stuff, well done! I don't see any reason to use GraphRAG any more after that. I guess the technology will continue to surprise us, but the cost argument is powerful when you handle tons of data

  • @gunu3187
    @gunu3187 26 วันที่ผ่านมา +1

    Thanks for sharing , however this is another smart config changes resulting in low prompt tokens , Microsoft GraphRag uses higher overlap window ( 300:100 ) whereas here it is using (1200:100) which itself reduces number of prompt tokens used significantly. we should deep dive to understand if researchers have done something different to ensure much lower overlap window

  • @remusomega
    @remusomega หลายเดือนก่อน +2

    Graphs solve the problem of chunk embeddings being de-contextualized.
    Late Chunking solves this problem. I think we need to re-consider the use cases for GraphRags.

  • @ahmadzaimhilmi
    @ahmadzaimhilmi หลายเดือนก่อน +3

    It costs me $0.02 per 10 page pdf document using openai api. I think it's pretty decent.
    Future improvements should also include storing all these json files in a database.
    Also, have you figured out how to get the reference chunks used to generate the response to the query?

    • @penguinmagehello
      @penguinmagehello หลายเดือนก่อน +1

      Mind sharing how/ which packages you use to split pdfs especially those with images?

    • @ahmadzaimhilmi
      @ahmadzaimhilmi หลายเดือนก่อน

      @@penguinmagehello google marker pdf to markdown

    • @KevinKreger
      @KevinKreger 3 วันที่ผ่านมา

      @@penguinmagehello No images. The example on github is using textract for pdf text extraction, but you can use any other approach and save the images. You could add them to the graph by sending them to a VLM for a descriptive summary. That would go to the entity/relationship resolution step. Your chunking would have to respect the figure description (See figure 1, which blah blah) and the figure title.

  • @KevinKreger
    @KevinKreger 3 วันที่ผ่านมา

    On the 'mixed' dataset, I don't think it had enough information on the various topics to create a comprehensive graph. I'm wondering if GraphRAG digs deeper or does some other technique with the graph meta-data like BM25.

  • @emirishak7609
    @emirishak7609 5 วันที่ผ่านมา +2

    Using LightRAG with gguf?

  • @trytry6569
    @trytry6569 หลายเดือนก่อน +5

    Please please please make a video in which we can use it with our local models.

    • @engineerprompt
      @engineerprompt  หลายเดือนก่อน +5

      on it :)

    • @trytry6569
      @trytry6569 หลายเดือนก่อน

      @@engineerprompt Thanks man🙌

    • @johnkintree763
      @johnkintree763 หลายเดือนก่อน +1

      ​@@engineerpromptThe Zamba2 family of models looks interesting for running locally with lower latency and more tokens/sec output.

  • @viiskb
    @viiskb 6 วันที่ผ่านมา

    For the same book, graphRAG uses 1.1 million input tokens and 200k output tokens.

  • @guscastilloa
    @guscastilloa หลายเดือนก่อน

    How do you record your screen so that it follows your cursos? It’s super useful to follow along specially when reading papers! Kudos on this amazing expose of this methodology!

    • @dylanmoraes990
      @dylanmoraes990 หลายเดือนก่อน

      It's a video editing app called screen studio on mac

  • @dawid_dahl
    @dawid_dahl หลายเดือนก่อน

    Thanks for the really great video, by the way.

  • @RickySupriyadi
    @RickySupriyadi หลายเดือนก่อน +1

    wow so many RAG system this year already

    • @engineerprompt
      @engineerprompt  หลายเดือนก่อน +1

      Yup, its hard to track but nice to see the different ideas that are coming up.

  • @dawid_dahl
    @dawid_dahl หลายเดือนก่อน +13

    In a few years I suspect we will laugh at all these hacky RAG implementations as one will simply be able to dump everything into the context window and there will be some native mechanism to handle efficiency. What do you think?

    • @adegboyegaajenifuja1274
      @adegboyegaajenifuja1274 หลายเดือนก่อน

      Or you just grant access to your document repositories and you're good to go

    •  หลายเดือนก่อน

      Needle in haystack problem of big context Windows....

    • @BryantAvila
      @BryantAvila หลายเดือนก่อน +4

      To dump 10K documents each composed of at least 100 pages seems it will always be unrealistic. RAG of some sort will still be needed.

    • @dawid_dahl
      @dawid_dahl หลายเดือนก่อน +1

      @ Will be interesting to see how this comment ages over the coming years. (Or mine!)

    • @thunkin-ai
      @thunkin-ai หลายเดือนก่อน

      the native mechanism might probably be a graphrag implementation

  • @abhishekbose1081
    @abhishekbose1081 หลายเดือนก่อน +2

    Can I use this with Hugging face inference api or Vertexai api ? Actually I have access to this api only.

    • @yigidovic
      @yigidovic 3 วันที่ผ่านมา

      Use LiteLLM to standardize them to OpenAI API then configure BASE_URL and you are free!

  • @AIWhale3
    @AIWhale3 27 วันที่ผ่านมา +1

    Is Lightrag supposed to be used with a vector database, a graph database or both?

    • @KevinKreger
      @KevinKreger 3 วันที่ผ่านมา

      Both (nano vector database) along with the graph (which I believe is Neo4J by default)

  • @ai_dart
    @ai_dart หลายเดือนก่อน +1

    Good Info

  • @mclachan
    @mclachan หลายเดือนก่อน

    Have you tested it on structured data?

  • @srhino14
    @srhino14 21 วันที่ผ่านมา

    Thanks!

  • @muhammadshafiqsafian6149
    @muhammadshafiqsafian6149 หลายเดือนก่อน

    how can i view the algo flowchart? a bit complex to understand

  • @WaylonLu
    @WaylonLu หลายเดือนก่อน

    how does integrate the vector dataabse?

  • @ashgtd
    @ashgtd หลายเดือนก่อน

    great video thank you

  • @AhmedMagdy-ly3ng
    @AhmedMagdy-ly3ng หลายเดือนก่อน

    Hey 👋
    I'm one of the most exciting fans of you and I have the opportunity to come to India I wish I can see you and have a conversation..
    Please 🥺🙏

  • @akshatgandhi7958
    @akshatgandhi7958 หลายเดือนก่อน

    Thanks

  • @ahmadzaimhilmi
    @ahmadzaimhilmi หลายเดือนก่อน

    I like everything about lightrag. I wish we could see the reference chunk/document for the returned query too.
    Also, if there's a better way to query from a sql/nosql db instead of querying from drive.

  • @Jvo_Rien
    @Jvo_Rien หลายเดือนก่อน

    thank you :)

  • @axelwehmeyer9599
    @axelwehmeyer9599 หลายเดือนก่อน

    cool.
    Is there an implementation for Groq-API like gpt_4o_mini_complete-API in LightRAG?
    How can i use a GUI-Chatbot for LightRAG, e.g. chainlit/streamlit/...?
    thx

    • @engineerprompt
      @engineerprompt  หลายเดือนก่อน

      I think there are a couple of PRs for other models. Not sure about the GUI

  • @syedsaifullahtarique
    @syedsaifullahtarique หลายเดือนก่อน

    How to create LightRAG object inside dicken folder

  • @ingenierofelipeurreg
    @ingenierofelipeurreg หลายเดือนก่อน

    Which of all RAG is cost effective and quality better?

    • @engineerprompt
      @engineerprompt  หลายเดือนก่อน +3

      Its a hard question to answer. It will really depend on the task at hands. If you think its just search/looking up information, may be a standard RAG. If there are relationships between objects/entities then may be a knowledge graph.

  • @themax2go
    @themax2go หลายเดือนก่อน +2

    so essentially they implemented triples / triplets (sciphi/triplex) 🤔

  • @JoseAntonio-sn6sf
    @JoseAntonio-sn6sf หลายเดือนก่อน

    nice video, I am just starting with RAGs, so sorry if my question is a little stupid, but if you spend 80k tokens running LightRAG, why the necessity to even implement a RAG when the book it self has 40k tokens? I mean wouldn't be easier to send the whole book to chatgpt?

    • @ravigurram9884
      @ravigurram9884 17 วันที่ผ่านมา +1

      Imagine large systems with terabytes of data.

    • @vap0rtranz
      @vap0rtranz วันที่ผ่านมา

      > "I mean wouldn't be easier to send the whole book to chatgpt?" because this stuff is for knowledge graphs, not simple doc Q&A. The graphs create relationships *between* content. We used to do this in KBs by manually (and slowly) tagging and hyperinking stuff that we thought was related. Now models can create the relationships for us without having to hire 1,000s of librarians. The possibility to have a system trained to create meaningful relationships between content and dynamically pull that content on demand is mind blowing. Pre-trained models are already coming out.