Data wrangling with R in 27 minutes

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 50

  • @EquitableEquations
    @EquitableEquations  ปีที่แล้ว +7

    You can find materials supporting this vid (and others) at github.com/equitable-equations/youtube.

  • @Nadiajavandel
    @Nadiajavandel 9 วันที่ผ่านมา

    I am watching all the R learning videos from start to finish. I have learned so many things, Thank you so mush🙏

  • @DayoOluwakemi
    @DayoOluwakemi 4 หลายเดือนก่อน +5

    Your instructions are very understandable and detailed. I have gained a great deal of knowledge from your lessons. Thank you very much 🙏

  • @KKmovesToMars
    @KKmovesToMars ปีที่แล้ว +2

    great video! I am so grateful you have taken the time to put these videos together! love your approach. Thank you, this is really great! I am a fan (as you can probably tell by now)

  • @deyvismejia7529
    @deyvismejia7529 9 หลายเดือนก่อน +2

    I learned so much! Just started using dplyr a couple days ago and wanted something comprehensive on basics. So much to learn, it's not too difficult either.

  • @hirozopel
    @hirozopel 8 หลายเดือนก่อน +2

    Just wanted to say this was awesome. Great energy and instruction. You got yourself a new sub today!

  • @skriesten
    @skriesten ปีที่แล้ว +1

    Really enjoy your presentations. Being new to R this has been really helpful

  • @joeltorres1237
    @joeltorres1237 ปีที่แล้ว +9

    It's obvious you have experience teaching! Organized and clear instructions. Thank you! I said I would use python next but your videos and something about R keep me wanting to stick with it. Do you use Python for any specific tasks?

  • @user-se9uk2py5k
    @user-se9uk2py5k ปีที่แล้ว +3

    Very clear and helpful videos. Thank you very much! Muchas gracias!!! 😊

  • @mercylearns
    @mercylearns 9 หลายเดือนก่อน

    Thank you so much!! it's so useful; Even I took stat course in my university, the professor never taught us how to wangle data! This video is so useful!🤩

  • @gaziozhan6438
    @gaziozhan6438 27 วันที่ผ่านมา

    Thank you for the instructions about the pipe operator . One comment I should like to add is that
    "command + shift + M" should be "Ctrl + shift + M" to insert the pipe operator %>%.

    • @pp1u
      @pp1u 17 วันที่ผ่านมา

      "command+shift+M" is in Mac, "Ctrl+shift+M" is in Windows for pipe operator

  • @ahmedelkholy1323
    @ahmedelkholy1323 ปีที่แล้ว +1

    as usual very amazing useful quick Revision
    thank you so much sir

  • @NikkiShah-ky5km
    @NikkiShah-ky5km 9 หลายเดือนก่อน

    Very clear and helpful. Thank you for taking the time to create great content!

  • @mycountryfarm
    @mycountryfarm 10 หลายเดือนก่อน +1

    This has been really helpful. Thanks

  • @muhammedhadedy4570
    @muhammedhadedy4570 ปีที่แล้ว +3

    I love your work. Thank you so much for your great videos. Please, keep up the great work and I would like to ask you if you can make a tutorial on the lubridate package and dealing with dates in R. It's so underrated package despite the great importance of dates variables in data science..

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว

      HI! This is definitely on my to-do list. Fabulous package.

  • @cptnbrrycrnch5194
    @cptnbrrycrnch5194 ปีที่แล้ว

    Great video, really appreciate you making this!

  • @KaiqueStorck
    @KaiqueStorck ปีที่แล้ว +1

    Amazing vídeo, thanks!

  • @Abdul-nt9uk
    @Abdul-nt9uk 4 หลายเดือนก่อน

    Your content is amazing. Thank you so much,

  • @almaisaks
    @almaisaks 8 วันที่ผ่านมา +1

    Data wrangling with R in 27 minutes
    - subset y row with filter
    - subset by column with select
    - reorder row with arrange
    - add or modify columns with mutate
    - other small verbs
    - grouped summaries with group

  • @arebuissa7547
    @arebuissa7547 ปีที่แล้ว

    Thank you very informative and easy to understand the basics

  • @mackottens
    @mackottens ปีที่แล้ว +1

    Your content has really helped me transition from STATA to R! Any plans to do some SEM modelling?

  • @kkanden
    @kkanden ปีที่แล้ว

    i love your videos so much

  • @TheJq32
    @TheJq32 ปีที่แล้ว +1

    Hi,
    Do you have any plans on doing a video on best practices for R markdown? I'm trying to learn about chunks, blocks, knitr via other online resources and its kind of confusing me.
    PS really appreciate your time and effort for these, I'm going for a career change and its really giving me confidence that I can do this

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว

      Yes! Here's my vid on R Markdown: th-cam.com/video/asHhuHRxhvo/w-d-xo.html.
      Hope it helps!

  • @jorgecepe
    @jorgecepe 6 หลายเดือนก่อน

    thank you very much! very good material

  • @maireadleyden6387
    @maireadleyden6387 7 หลายเดือนก่อน

    Excellent. Thank you

  • @Browncas
    @Browncas ปีที่แล้ว

    Thank you for sharing this. 🙏

  • @romanvasiura6705
    @romanvasiura6705 ปีที่แล้ว +1

    Thank you!
    In addition I see nice feature.
    After changing a variable - we look at it by View() command... but if I do some changes one more time I can change a page were I've already call a variable and I can see new changes without calling View() once again.

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว +1

      Yes! Also, when tidyverse is loaded, you don't actually need to capitalize view().

  • @theecanmole
    @theecanmole ปีที่แล้ว

    I didn't know that arrange is the tidyverse equivalent of sort. Thanks!

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว

      So much of dplyr is inspired by SQL.

    • @simonmenlah1817
      @simonmenlah1817 2 หลายเดือนก่อน

      @@EquitableEquations Exactly, I have fallen in love with R due to tidyverse. The tidyverse feels like another language on its own. More of a Python way of writing R code

  • @SobugShikder
    @SobugShikder ปีที่แล้ว

    I did not find the diamonds file in your Github account.can you please tell me where can i find it?

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว

      Hi! It becomes available in R as soon as you load tidyverse. You don't need to download it separately.

  • @harshitarajput2739
    @harshitarajput2739 ปีที่แล้ว +1

    How to get that diamond dataset

    • @EquitableEquations
      @EquitableEquations  ปีที่แล้ว

      It becomes available to you as soon as you load tidyverse.

  • @jothamithagu7403
    @jothamithagu7403 ปีที่แล้ว

    group_by() is the SUMIF in spreadsheet..
    Awesome.
    👏👏👏👏👏👏👏

  • @PaulYoung-r8g
    @PaulYoung-r8g ปีที่แล้ว

    Amazing

  • @CaribouDataScience
    @CaribouDataScience ปีที่แล้ว

    Thanks

  • @mjacfardk
    @mjacfardk ปีที่แล้ว

    thank you

  • @samuelolaoluwa150
    @samuelolaoluwa150 7 หลายเดือนก่อน

    You're awesome.
    I heard to come back here, having watched one of your videos; learning R in 39 minutes.
    I have a question please
    I'm doing the data analysis for my research titled; modeling of selected classification methods and comparison of their performance in the classification of anaemia patients among Nigerian children.
    Now, I've not been using much of R before this work. So I ran into an issue with my dataset. I have one on of my predictor variables to be continuous. When I declared its class in R as numeric, all values for that variable were overwritten as NAs. I can't start checking each cell because there are almost 11,000 observations. How do I fish out where the problem is?

  • @yourivyleaguegirl
    @yourivyleaguegirl 7 หลายเดือนก่อน

    for those who couldn't get arrange function done: library(dplyr)
    df=diamonds_sm
    df2%arrange(color)
    view(df2)

  • @OsamaElghawil
    @OsamaElghawil 10 หลายเดือนก่อน

    The way that the date shows by teachers is not learnable

  • @samuelolaoluwa150
    @samuelolaoluwa150 7 หลายเดือนก่อน +1

    You're awesome.
    I heard to come back here, having watched one of your videos; learning R in 39 minutes.
    I have a question please
    I'm doing the data analysis for my research titled; modeling of selected classification methods and comparison of their performance in the classification of anaemia patients among Nigerian children.
    Now, I've not been using much of R before this work. So I ran into an issue with my dataset. I have one on of my predictor variables to be continuous. When I declared its class in R as numeric, all values for that variable were overwritten as NAs. I can't start checking each cell because there are almost 11,000 observations. How do I fish out where the problem is?