Geometric Interpretation of Ordinary Least Squares: An Introduction

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น • 19

  • @vatsalamolly
    @vatsalamolly 4 ปีที่แล้ว +8

    Sometimes when you're studying advanced stuff, you get confused about the very basics. Thank you for this quick and easy explanation!!

  • @andresiganciomunozecheverr6071
    @andresiganciomunozecheverr6071 4 ปีที่แล้ว +5

    Among all the intuitions we can possibly find, this is exactly the one I was looking for, thx a lot Ben!!!

  • @ranjit1568
    @ranjit1568 10 ปีที่แล้ว +1

    Hey thanks for the video. Why at the end do you say u hat equals XBeta hat?
    I thought it is y hat = XBeta hat.. thanks

  • @murfalious
    @murfalious 6 ปีที่แล้ว +2

    Thank you very much. Clarified this subject very well :)

  • @javierwagner4410
    @javierwagner4410 ปีที่แล้ว

    Would it be valid to interpret it instead as the row space, given that the row space defines the independent variables and pre-determines in which space the observations can move. Row vectors seem to make more sense as all observation are restricted to the # of independent variables present.

  • @291291ify
    @291291ify 11 ปีที่แล้ว +1

    you are a life saver, thank you so much!!

  • @samkim6933
    @samkim6933 5 ปีที่แล้ว +1

    I think u hat, in this case, doesn't indicate the residual, it only means the orthogonal projection of y onto col(X)... is that right?

    • @kurtvonschleicher
      @kurtvonschleicher 5 ปีที่แล้ว

      no, u hat is the distance between the orthogonal projection of y over the space (in this example represented as mu hat on a plane) spanned (obtained through linear combinations) by the columns or vectors (column space) and the actual y. there is a unique linear combination obtained through the Ols method that minimizes the value of u hat. the parameters of such "optimal" combination are the betas of the regression. u hat can be also interpreted as the portion of y that cannot be expressed through a linear combination of the columns (i.e. the part of y that does not lie on the column space). why is u hat perpendicular to the row space? due to the fact that u hat lies in the so called "left null space", which as stated in the fundamental theorem of linear algebra is orthogonal to the column space.

  • @Marteenez_
    @Marteenez_ ปีที่แล้ว

    Is it possible for y to be in the column space of X?

  • @aleksanderpasato6916
    @aleksanderpasato6916 10 ปีที่แล้ว

    Hi, thanks for great explanation. I've been looking for something like this for ages ;) I guess I don't get one thing. Isn't it so that span of 3 independent vectors in 3D space cover entire space (as we can get any point by using linear combination) instead of just a plane?

    • @kottelkannim4919
      @kottelkannim4919 4 ปีที่แล้ว +2

      2:59 The space described in the video is 4D, albeit drawn on a 2D graphic tablet. So 3 independent vectors in 4 dimensional space do span a "plane".

    • @tommy-lee-johnes
      @tommy-lee-johnes 3 ปีที่แล้ว +1

      @@kottelkannim4919 yeah! Thats a hyperplane (sounds much fancier than it is)

    • @fk866
      @fk866 2 ปีที่แล้ว

      @@kottelkannim4919 n

  • @NoName-kg5rv
    @NoName-kg5rv 3 ปีที่แล้ว

    Amazing!!

  • @bertobertoberto3
    @bertobertoberto3 9 ปีที่แล้ว +1

    that was excellent

  • @vinsavi
    @vinsavi 7 ปีที่แล้ว

    what bounds all x into 1 plane? . if y1 is a step explained by [1 x11 x12] then it means there are 3 steps needed to explain y1 thats all, no one is saying that those all are in one plane. kindly explani

  • @Angel1a89
    @Angel1a89 3 ปีที่แล้ว

    Thank you!!!!

  • @m.h.4652
    @m.h.4652 2 ปีที่แล้ว +1

    The end of the video is not correct. When you write u_hat = XBeta_hat, thats not correct. It should be u_hat = y_hat - X Beta_hat

    • @zhizhongpu8937
      @zhizhongpu8937 ปีที่แล้ว

      Agreed; there's also another error: the vector in the column space should be XB (in the graph now it's u) and the difference vector should be y-XB = u (instead of y-u as in the video 4:54)