Benjamin Recht: Optimization Perspectives on Learning to Control (ICML 2018 tutorial)

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 7

  • @fenglongsong4760
    @fenglongsong4760 2 ปีที่แล้ว

    Really clear! Best tutorial to talk about the relationship between optimal control and reinforcement learning I've ever seen!

  • @yviruss1
    @yviruss1 5 ปีที่แล้ว +3

    Special thanks to the uploader. What a gem of a talk! The link on Brecht's webpage is not 720p (it is 360p), so this is a lifesaver.

  • @kvasios
    @kvasios 4 ปีที่แล้ว +1

    Great upload! Thanks!

  • @amr.sharaf
    @amr.sharaf 6 ปีที่แล้ว +1

    This tutorial is great, thanks for sharing, I have a question, there is an implicit assumption that the system dynamics is non-stochastic, except for the zero-mean noise disturbance e, does these observations / results about sample complexity hold for stochastic MDP dynamics as well?

    • @yviruss1
      @yviruss1 5 ปีที่แล้ว

      Not quite. I am assuming you are referring to slide number 42/80 titled discrete MDPs. The sample complexity is modified by the number of iterations, which is not one for the case that you point out.

  • @yviruss1
    @yviruss1 5 ปีที่แล้ว

    On 67/80, sounds something like receding horizon control.

  • @blanamaxima
    @blanamaxima 6 ปีที่แล้ว

    sweet talk