Quotient Rule Proof

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ม.ค. 2025

ความคิดเห็น • 81

  • @sensei9767
    @sensei9767 6 ปีที่แล้ว +76

    QUO
    CHEN
    LU?!
    I'm dead.

    • @RyantheCanuckpirate
      @RyantheCanuckpirate 5 หลายเดือนก่อน

      The best Street Fighter character of all time

  • @drpeyam
    @drpeyam 6 ปีที่แล้ว +24

    Beautiful Intro! 🥰 And of course: Chen Lu!!! 😄

  • @hisxmark
    @hisxmark 6 ปีที่แล้ว +20

    I don't think it matters how many languages you can speak if you can speak mathematics.

  • @artursanti3276
    @artursanti3276 6 ปีที่แล้ว +37

    We also have to deal with books not using factoreo wtf

  • @beatoriche7301
    @beatoriche7301 6 ปีที่แล้ว +18

    I never really considered the quo chen lu to be its own rule, namely because it can very easily be derived from the prada lu and the chen lu. Sure, you could derive all the other rules using just the chen lu and the derivative of e^x, but the prada lu and the power rule come up frequently enough. However, the quo chen lu doesn’t really come up in a lot of contexts where it isn’t just as convenient to use the prada lu instead. To me, it just seems like an unnecessary formula to memorize - but maybe that’s just because my way of learning is weird. If I may ask, what are the experiences of your students with the quo chen lu? Does learning it facilitate their journey through calculus?

  • @mrjnutube
    @mrjnutube 6 ปีที่แล้ว +3

    As usual, such a nice video, well explained and easy to understand. Well done. Thanks

  • @robertketcham9576
    @robertketcham9576 2 ปีที่แล้ว

    Wow! My professor went totally off the deep end with his explanation. Used some version of the trigonometric half angles…in short, he confused everybody in class, and then told us that we would have to memorize it for the test. I am going to submit the method you used tomorrow in class and ask if it would be acceptable. Thank you so much!!!

  • @TheCalcSeries
    @TheCalcSeries 2 ปีที่แล้ว +1

    Quo Chen Lu... that made my day!

  • @patrickammons6443
    @patrickammons6443 6 ปีที่แล้ว +3

    blackpenredpen can you do a video on integrating this formula to get a Quo Chen Lu version of Integration by Parts? My friend and I figured it out but I wanted to know if it had any uses.

  • @12-343
    @12-343 3 ปีที่แล้ว

    The way this was taught to me was using this:
    Low d high plus high d low, draw a line and square below

  • @joelwilcox6931
    @joelwilcox6931 6 ปีที่แล้ว +2

    For the past several years, I’ve been stuck on this one math puzzle:
    Imagine with a circle, with radius R, and draw a circular sector with an angle theta. Next, draw a chord, thus creating a triangle, and a circular segment. What angle does theta need to be so that the triangle and circular segment are equal in area?
    I cheated a bit, so I already know the angle is (approximately) 1.895~ radians. I’m not, to be completely honest, interested in the value of theta; I’m interested, instead, in an expression that defines theta exactly (kinda like how Pi can be expressed as an infinite sum.)

    • @joelwilcox6931
      @joelwilcox6931 6 ปีที่แล้ว

      That’s as far as I got, setting the two areas equal to each other, and simplifying to 2sin(theta)=theta.
      I’m hoping to find a different route... kinda like a “back door” approach?

    • @alicwz5515
      @alicwz5515 6 ปีที่แล้ว

      Using some formulas you get this equation:
      2sinx - x = 0
      It has 3 solutions: 0, A and -A. The bad thing is you can't write A (~1.895) using other numbers, you can just aproximate it. That's because A is a trancendental number (like pi) :D

    • @alicwz5515
      @alicwz5515 6 ปีที่แล้ว +3

      I did some more math here and I found out that A is the solution to this following sum (n goes from 0 to inf):
      Sum of (x^2n)/((2n+1)!) = 1/2

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 ปีที่แล้ว

    Sir We can also have : g = e^ (ln g ), f= e^(ln f) then f/g = e^ (lnf -- lng ) then we can proceed to differentiate as usual to get ( f/g ) ' = e^ (lnf -- lng ) . ( f' / f -- g' / g = f/g ( f' /f -- g' / g ) = (gf' -- fg' )/ g^2

  • @blackholesun4942
    @blackholesun4942 10 หลายเดือนก่อน

    2:20 d/DX(1/y) = (dy/DX) * (d(1/y) /dy )

  • @stevensiew4072
    @stevensiew4072 6 ปีที่แล้ว

    How about dancing with Carl Cool Lass?

  • @smokescreen9119
    @smokescreen9119 6 ปีที่แล้ว +15

    But....
    But it's *Koshen Lu*

  • @laurentbouvier7334
    @laurentbouvier7334 6 ปีที่แล้ว +12

    Steve? Your secret identity came out of the blue .. but this is only your English name. One day, we will learn your real Chinese first name

    • @stumbling
      @stumbling 6 ปีที่แล้ว +3

      He is... Chen Lu!

  • @safouaner-ryfy6060
    @safouaner-ryfy6060 6 ปีที่แล้ว +1

    integrate of cos x/x^4 please if is it

  • @hjk0150
    @hjk0150 6 ปีที่แล้ว +1

    Could you do a video showing how to prove the 2πr circumference formula by taking the limit as n approaches infinity of the perimeter of an n-sided polygon inscribed in a circle? That would be awesome! 😀

    • @donsena2013
      @donsena2013 2 ปีที่แล้ว

      So, what would be the definition of π, if not π

  • @ianmoseley9910
    @ianmoseley9910 4 ปีที่แล้ว

    You can, of course, derive it from the basic definition of a derivative without bothering the the other rules.

  • @vijaynath8493
    @vijaynath8493 4 ปีที่แล้ว

    Disclaimer ploddud dule means product rule and davvededd rule means division rule 😁😁😁😁

  • @ericventalon6113
    @ericventalon6113 6 ปีที่แล้ว +1

    C est vraiment super ces vidéos. Vous avez une très bonne pédagogie, de l humour. Vous êtes tous les deux géniaux !. 👍👍

  • @l3igl2eaper
    @l3igl2eaper 6 ปีที่แล้ว +2

    Do the Trippa Prada Lu

  • @anshumaningale06
    @anshumaningale06 ปีที่แล้ว

    VERY WELL AND PREECISE EXPLANATION THANK YOU VEERY VEERY MUCH

  • @plislegalineu3005
    @plislegalineu3005 2 ปีที่แล้ว

    powa lu by induction and prada lu

  • @marclink0
    @marclink0 6 ปีที่แล้ว

    Chen Lu and Quo Chen Lu... Is that like Sign and Quo Sign?

  • @aurithrabarua4698
    @aurithrabarua4698 6 ปีที่แล้ว

    Finally it has come on my birthday!!! 😁😁😁😁

  • @ezyn2159
    @ezyn2159 6 ปีที่แล้ว

    Best crossover ever

  • @RitikSingh-wc6ps
    @RitikSingh-wc6ps 6 ปีที่แล้ว

    integrate 1/(1+x^5) please

  • @rik69x03
    @rik69x03 6 ปีที่แล้ว

    Can you make a video on integration by parts?

  • @janouglaeser8049
    @janouglaeser8049 6 ปีที่แล้ว +5

    The chain rule is unnecessary here:
    One begins wih the product rule, (hg)' = h'g + hg'
    (hg)' - hg' = h'g
    [(hg)' - hg']/g = h'
    [g(hg)' - hgg']/g² = h'
    Now, let h=f/g (therefore hg = f). By replacing we get:
    [gf' - fg']/g² = (f/g)'. There we have it.

    • @stumbling
      @stumbling 6 ปีที่แล้ว

      Wan lu to lu them all!

  • @vishalsharma9238
    @vishalsharma9238 6 ปีที่แล้ว

    Integration of sin x/sin x + cos x dx ?

  • @beckbock1420
    @beckbock1420 ปีที่แล้ว

    saving my life here

  • @JBaker452
    @JBaker452 6 ปีที่แล้ว

    Is there a 1/2 Lu theorem?

  • @ln7247
    @ln7247 6 ปีที่แล้ว

    So that is chen lu! Wow

  • @yaoteckng1034
    @yaoteckng1034 6 ปีที่แล้ว

    Isn't it guo shen lu

  • @ericventalon6113
    @ericventalon6113 6 ปีที่แล้ว

    Au fait l étudiant russe qui avait fait une démonstration sur les suites et leurs sommations, qu' est ce qu' il est devenu ?

  • @jameeztherandomguy5418
    @jameeztherandomguy5418 ปีที่แล้ว

    LMAO why do you call them that, it took me half a minute to realize the names were the words!! prada lu and chen lu LMAO

  • @adhirachannel1148
    @adhirachannel1148 6 ปีที่แล้ว

    Plz help me to integrate e^(sinx) dx

  • @Albert-Sun
    @Albert-Sun 6 ปีที่แล้ว +1

    新年快乐!

  • @christianjohnflores4966
    @christianjohnflores4966 6 ปีที่แล้ว

    Black pen redpen keep up the good work can you please make a video about sec^3x tan^3x

  • @bandamkaromi
    @bandamkaromi 6 ปีที่แล้ว +1

    quo chen lu := quotient rule #aha #mathforfun

  • @imbreakingdown2683
    @imbreakingdown2683 3 ปีที่แล้ว

    I literally googled who tf is Quo Chen Lu😒

  • @calm.aware.
    @calm.aware. 6 ปีที่แล้ว +2

    Next time use 律 instead of „Lu“ 😉
    (Yes, I know the pronunciation differs slightly but at least it means „rule“.)

  • @Patapom3
    @Patapom3 6 ปีที่แล้ว

    Great!

  • @MoonLight-sw6pc
    @MoonLight-sw6pc 6 ปีที่แล้ว

    Happy lunar year %

  • @MinorBluesScale
    @MinorBluesScale 6 ปีที่แล้ว +4

    Fake ln rule:
    Find a and b, so that ln(a+b) = ln(a) * ln(b) .

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 ปีที่แล้ว

      Ferdinand Grein ln(a + b) = ln(a)ln(b) => a + b = b^ln(a). Now let c = ln(a), so e^c + b = b^c. Then (e/b)^c + b^(1 - c) = 1 = e^[dc] + e^[ln(b)(1 - c)] = [e^c]^d + [b][e^c]^[-ln(b)]. This equation is unsolvable, in that e^c cannot be isolated by applying any finite set of operations. As such, one cannot find all the solutions a & b analytically.

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 ปีที่แล้ว

      More clearly, simply let x = ln(a) and y = ln(b), so ln(e^x + e^y) = xy. This implies e^x + e^y = e^xy, which implies (e^x)^y - (e^x) - e^y = 0, but this equation is unsolvable. Let e^x = p and e^y = q. Then the equation is p^y - p - q = 0, and now it is evident that one cannot obtain p as a relation of q. This was proved in the Abel-Ruffini theorem, where it was discovered that the equation in general is unsolvable for y = 5 and y > 5.

    • @Apollorion
      @Apollorion 6 ปีที่แล้ว

      Mmm.. let's say:
      1. ln(a) and ln(b) are defined and so: neither a nor b are zero.
      2. So the quotient of a and b is always defined, let's label that u, such that u=b/a and b=au
      3. ln(a+b) = ln(a) * ln(b) ln(a(1+u))=ln(a) * ln(au) = ln(a) + ln(1+u) = ln(a) * (ln(a) + ln(u))
      4. Let's label ln(a) as x
      5. [3] /\ [4] => x^2 + x*(ln(u)-1) - ln(1+u) = 0 = x^2 + x*ln(u/e) - ln(1+u) = (x + ln(u/e)/2)^2 - ((ln(u/e))^2)/4 - ln(1+u) =>
      6. x + ln(u/e)/2 = +/- sqrt( ln(1+u) + ((ln(u/e))^2)/4 ) x = ln(e/u)/2 +/- sqrt( ln(1+u) + ((ln(u/e))^2)/4 )
      7. Choose a value of u from the positive real domain and [6] gives two relevant solution values for x, and the relevant a and b via a=exp(x) [4] and b=au [2]
      Note: u>0 => 1+u>1 => ln(1+u)>0
      u>0 => u/e>0 => ln(u/e) is defined and real => (ln(u/e))^2 is greater than or equal to zero.
      So the square-root in [6] is always from a positive real number.

    • @vitakyo982
      @vitakyo982 6 ปีที่แล้ว

      I don't think it's possible to solve . I'm working on an approach in 3D , the couples solution are the intersection of the surfaces of respective equations : z = ln(a+b) & z = ln(a)*ln(b) (where a & b are the x & y axes ) . At least to see how it looks like ...

  • @ethanc.3625
    @ethanc.3625 6 ปีที่แล้ว +1

    🐷你新年快乐!

  • @namansingh6249
    @namansingh6249 6 ปีที่แล้ว

    Lu family

  • @davideissler6162
    @davideissler6162 6 ปีที่แล้ว +1

    Back when I learned it long ago, we called it the hoho rule. That is, d(hi/ho) = hodhi minus hidho over hoho.

  • @Johnson-Young
    @Johnson-Young 6 ปีที่แล้ว

    今天我们用普拉达陆和陈路的方法证明郭晨露😂

  • @coda-n6u
    @coda-n6u 6 ปีที่แล้ว

    括晨陆

  • @user-pe7gf9rv4m
    @user-pe7gf9rv4m 6 ปีที่แล้ว +1

    擴沈路!

  • @jzanimates2352
    @jzanimates2352 6 ปีที่แล้ว

    How is the power rule related to everyone?
    (I don’t know how to say power rule in terms of lu)

    • @Kevcraftlp
      @Kevcraftlp 6 ปีที่แล้ว

      Maybe Pao Wa Lu?

    • @drpeyam
      @drpeyam 6 ปีที่แล้ว +2

      Pawa Lu!!!

    • @nimmira
      @nimmira 6 ปีที่แล้ว

      Pawa (Paoa) Lu

  • @nimmira
    @nimmira 6 ปีที่แล้ว

    lol
    Funny thing is, I remember when I used to study these back in college (and HS), I don't remember they gave us names to any of these "rules" at all. We are just taught the methods in these cases (multiplication, division, powers...etc).
    I wish if you do any videos, if possible, about contour integrals. I still, after all these years, can't figure out what's so special about them and how different they are from regular integrals?

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 ปีที่แล้ว

      nimmira Do you know anything about contour integrals at all to begin with?

    • @nimmira
      @nimmira 6 ปีที่แล้ว

      @@angelmendez-rivera351 done them long time ago in my mathematical physics classes and maybe calc C classes. Thats why im asking coz ive totally mixed their meanings with regular integrals

    • @iabervon
      @iabervon 6 ปีที่แล้ว +1

      @@nimmira They're integrals of a function of a complex variable. Since going from 0 to i could be different depending on what path you take (in particular, which way you go around poles), you need to specify the path as well as the endpoints. Then you find an antiderivative and choose branch cuts so you aren't crossing any. The most common use for them is to use residue calculus to get the value, then write the integral as the sum of some easy integrals and a definite integral you can't otherwise solve.

    • @nimmira
      @nimmira 6 ปีที่แล้ว

      @@iabervon Thanks!

  • @yasinlux4207
    @yasinlux4207 6 ปีที่แล้ว

    Pro Chen Lu 😂😂

  • @TylerMatthewHarris
    @TylerMatthewHarris 5 ปีที่แล้ว

    Lmao

  • @lifeispoop8537
    @lifeispoop8537 6 ปีที่แล้ว

    I was learning 20 pages of theorems on continuous functions and derivative... I was going to go asleep. Thanks for the little push 😍😍 (love ur vidz btw😝)
    Oh and could you make a video on how to write properly a demonstration, i’ m having troubles writing them clearly...

  • @nedisxx
    @nedisxx 6 ปีที่แล้ว +1

    Your g looks like 9

  • @oscartroncoso2585
    @oscartroncoso2585 6 ปีที่แล้ว

    First!