Overfitting, Underfitting, and Model Capacity

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 39

  • @mashiach_a
    @mashiach_a 4 ปีที่แล้ว +2

    You're literally answering all of my questions regarding Machine Learning and NNs in every minute in these videos. Thanks a lot!

  • @billy818
    @billy818 5 ปีที่แล้ว +1

    I just finished an undergrad datascience unit and this feels 20x better than the little ann lectures we had

  • @MrJaleelJamal
    @MrJaleelJamal 3 ปีที่แล้ว

    7:13 so there is a difference between validation set and test set. But is there a difference between validation loss and test loss? Because I would have thought that in the table test loss is instead of validation loss.

  • @chengjoseph9459
    @chengjoseph9459 4 ปีที่แล้ว +2

    Thank you Leo. I've gone through alot of explanations on underfitting and overfitting + difference between validation and test set and this one of the best explainations so far :)

  • @Nedjmeddine16
    @Nedjmeddine16 5 ปีที่แล้ว +4

    one of the best series on Deep Learning I ever seen in the whole web !
    keep it up :)
    PS: I watch yours videos every morning before going to work.

    • @leoisikdogan
      @leoisikdogan  5 ปีที่แล้ว +2

      Thanks, happy to hear that!

    • @abhishek.bansal05
      @abhishek.bansal05 5 ปีที่แล้ว +1

      To the point content. Easy to digest and understandable. This is the best course on deep learning. Thanks👍🏻

  • @MUKESHSINGH-ou1ou
    @MUKESHSINGH-ou1ou 5 ปีที่แล้ว +3

    thank you for this video .You have explained underfitting and overfitting in easy to grasp way.

  • @zablonwafula7976
    @zablonwafula7976 2 ปีที่แล้ว

    Great explation. Start showing them practically in R

  • @jorgeamaral8537
    @jorgeamaral8537 5 ปีที่แล้ว

    Leo, Thanks for the excellent course! I have a question about the use of the train, validation and test set. I saw an implementation where they implemented a deep learning network by first using gridsearch CV to find the best configuration of the hyperparameters such as learning rate, optimizer, etc and then they use a validation set to perform the early stopping with the validation set. Do you have another recommendation on how to use the validation set to perform the hyperpararameter tunning?

    • @leoisikdogan
      @leoisikdogan  5 ปีที่แล้ว

      Random hyperparameter search works better than grid search given a limited number of experiments you can run. One caveat is that if you tune so many hyperparameters to maximize validation set performance there is a risk of overfitting the hyperparameters to the validation set. To avoid that you can either use two separate validation sets or use early stopping during the search. I usually do neither though. So far my strategy in choosing the hyperparameters is to use heuristics such as fast.ai's automatic learning rate finder rather than doing an exhaustive search. I'm actually planning to make a video about hyperparameter and architecture search whenever I get to have some extra free time.

  • @fns3122
    @fns3122 5 ปีที่แล้ว

    very good course, please also upload a course on the KERAS ?

  • @freakfreak786
    @freakfreak786 2 หลายเดือนก่อน

    love the introduction
    Awesome video in general. thank you

  • @Patiencelad
    @Patiencelad 2 ปีที่แล้ว

    Excellent explanation Leo! Thank you.

  • @saanvisharma2081
    @saanvisharma2081 5 ปีที่แล้ว +2

    Very informative and clear.
    Btw, can you please make some video's on time series analysis.
    Ounce again thank you very much.

    • @leoisikdogan
      @leoisikdogan  5 ปีที่แล้ว

      Thanks! I briefly covered time series in this video about recurrent neural nets: th-cam.com/video/k97Jrg_4tFA/w-d-xo.html

  • @haoranxi3319
    @haoranxi3319 4 ปีที่แล้ว

    Can someone explain, What does "the model has low variance but high bias" mean? thanks

    • @ankitjain2398
      @ankitjain2398 4 ปีที่แล้ว

      Model having high bias means high training error and low varience means model is not overfitted i.e model is best fitted

  • @sureshothwarang
    @sureshothwarang 5 ปีที่แล้ว

    Is this also called model convergence?

    • @sureshothwarang
      @sureshothwarang 5 ปีที่แล้ว

      Please confirm this thanks

    • @leoisikdogan
      @leoisikdogan  5 ปีที่แล้ว

      Model convergence usually refers to when the loss becomes stable and stops improving.

    • @sureshothwarang
      @sureshothwarang 5 ปีที่แล้ว

      Leo Isikdogan how is the model fitness measured? Is this through MSE?

  • @shreyanshjain4250
    @shreyanshjain4250 4 ปีที่แล้ว

    Great Work! Best so far. Please do a detailed series on CNN please.

  • @akankshabali5859
    @akankshabali5859 4 ปีที่แล้ว

    please can you make video on adam optimizer !! i didnot understant it if you have this video please share with me

    • @leoisikdogan
      @leoisikdogan  4 ปีที่แล้ว

      I briefly explained Adam and other popular optimizers in this video: th-cam.com/video/kK8-jCCR4is/w-d-xo.html

  • @saeidbagheri7407
    @saeidbagheri7407 7 ปีที่แล้ว +1

    Great video!

    • @leoisikdogan
      @leoisikdogan  7 ปีที่แล้ว

      Saeid Bagheri Thanks!

    • @saeidbagheri7407
      @saeidbagheri7407 7 ปีที่แล้ว

      You mention regularization techniques for reducing the models capacity. What are some other techniques to reduce the capacity?

    • @leoisikdogan
      @leoisikdogan  7 ปีที่แล้ว

      That's what I will be talking about in the next video. I will cover the techniques that limit the effective capacity of models, such as early stopping, data augmentation, weight decay, etc.

  • @stay_fr0sty
    @stay_fr0sty 4 ปีที่แล้ว

    Thanks, awesome explaination

  • @aryansathish
    @aryansathish 3 ปีที่แล้ว

    Thank you

  • @ramapatipatra4814
    @ramapatipatra4814 ปีที่แล้ว

    awsome

  • @studiespotatoe5757
    @studiespotatoe5757 4 ปีที่แล้ว

    clap !!! Excellent !!!

  • @cahitskttaramal3152
    @cahitskttaramal3152 5 ปีที่แล้ว

    Hocam emeğine sağlık.

  • @thedashh3675
    @thedashh3675 4 ปีที่แล้ว

    thanks , love from india

  • @niallmcauley5325
    @niallmcauley5325 4 ปีที่แล้ว

    Your voice is horrific

    • @niallmcauley5325
      @niallmcauley5325 4 ปีที่แล้ว

      Very good video though, explained the concept well.

    • @ienjoysandwiches
      @ienjoysandwiches 4 ปีที่แล้ว +2

      His voice is one of the most interesting and endearing parts of the presentation. Don't be a dick.

    • @mattbiss6414
      @mattbiss6414 4 ปีที่แล้ว +2

      If you dont have anything nice to say dont say it at all! Great video, very well explained thank you so much :)