Linear Algebra 20d: Length Preserving Linear Transformations and Orthogonal Matrices

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 15

  • @MathTheBeautiful
    @MathTheBeautiful  4 ปีที่แล้ว +2

    Go to LEM.MA/LA for videos, exercises, and to ask us questions directly.

  • @darrenpeck156
    @darrenpeck156 2 ปีที่แล้ว +2

    Elegant, clear, brimming with insight, a real gift of a lecture.

  • @aleksandarlukac8868
    @aleksandarlukac8868 7 ปีที่แล้ว +5

    Mr Pavel Grinfeld, thank you so much for your passionate and breathtaking explanations that make me speechless. I am thankful for modern internet age that i can follow such interesting subject. So far i just learned definition of orthogonal matrices and i knew what they are, but i did not know motivation and how somebody came up with such concept. with this video i will whole my life forever know what orthogonal matrices are and what are used for. i will watch all your brilliant videos, and i am very thankful on them

    • @MathTheBeautiful
      @MathTheBeautiful  7 ปีที่แล้ว +5

      Hi Aleksandar, Thank you for your comment. I'm glad you find my videos helpful. I have students just like you in mind who are trying to understand the underlying principles.
      Pavel

  • @Sachdev23
    @Sachdev23 4 หลายเดือนก่อน

    Just one word for this lecture. Beautiful

  • @AmarSingh-ln6ie
    @AmarSingh-ln6ie 3 ปีที่แล้ว +1

    Great. Extremely nice explanation. Thanks

  • @siminho6929
    @siminho6929 4 ปีที่แล้ว +1

    Really good explanation, thank you :)

  • @tangolasher
    @tangolasher 7 ปีที่แล้ว

    +MathTheBeautiful The algebraic way you arrive at QTQ = I couldve been applied to any matrix transformation, am I right? Because it's just based on the fact that Transpose of a product of two matrices = the product of their transposes in reverse order, which holds for *any* matrix. However, QtQ = I *clearly* does not hold for just *any old matrix.* So the way you make this jump seems invalid. Could you please explain why this works? Thanks.

    • @agilanamirthalingam8418
      @agilanamirthalingam8418 4 ปีที่แล้ว +1

      this is late but anyway... The property used here is any square matrix commutes with its inverse. Here the inverse happens to be the transpose.

  • @thentust
    @thentust 8 ปีที่แล้ว

    Hi, my English isn't well, could professor write down the explanation of eigen value of the Q?

    • @MathTheBeautiful
      @MathTheBeautiful  8 ปีที่แล้ว +3

      +thentust Your English is great, but I'm not quite sure what your question is.

    • @thentust
      @thentust 8 ปีที่แล้ว

      +MathTheBeautiful
      My question is figured out. and I have another question:
      You said: "eigen values of the Q are really the same as the eigen values of the linear transformation Q ." ?? I thought Q is already a linear transformation matrix,what is linear transformation Q? Q*Q?

  • @vinylflouring
    @vinylflouring ปีที่แล้ว

    How can we be sure other professors even understand linear algebra?

  • @ektabansal7109
    @ektabansal7109 ปีที่แล้ว

    Matrix be like : I am a matrix, I'm burdened with glorious purposes