Lecture 01 - The Learning Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ม.ค. 2025

ความคิดเห็น • 452

  • @fernandoalvarado8840
    @fernandoalvarado8840 10 ปีที่แล้ว +115

    This is what I call "A real Professor" , congratulations.

  • @akbarghurbal
    @akbarghurbal 4 ปีที่แล้ว +27

    Can you imagine this material was on TH-cam since 2012! Thanks Caltech and professor Yaser for making it free.

  • @dushyantshukla8754
    @dushyantshukla8754 9 ปีที่แล้ว +159

    Prof. Yaser is a great teacher!!

  • @SaidElnaffar
    @SaidElnaffar 6 ปีที่แล้ว +39

    Yaser, you are not just a scientist but also an amazing teacher -- your students must be lucky to have you!

  • @tylerwaite8444
    @tylerwaite8444 9 ปีที่แล้ว +196

    I have gone through many courses attempting to learn machine learning (no pun intended), and this one is definitely the best. 10/10

    • @vivekpal7559
      @vivekpal7559 9 ปีที่แล้ว +2

      +Tyler Waite Same here and I agree with you. It is the best. Takes you from abstract idea to deeper concepts for better and easier understanding. What other courses did you take btw?...I could use some if there is any I didnt come across on my own.

    • @tylerwaite8444
      @tylerwaite8444 9 ปีที่แล้ว +7

      Besides this one, I mainly looked at the Stanford and MIT OpenCourseWare on TH-cam. It also looks like there is one my mathematicalmonk (looks similar to Khan Academy) that I would definitely look into if I had more time.

    • @vivekpal7559
      @vivekpal7559 9 ปีที่แล้ว +1

      Thanks man...I had never heard of mathematical monk before. Glad you mentioned it. Surely gonna follow his videos.

    • @shashanksagarjha2807
      @shashanksagarjha2807 6 ปีที่แล้ว

      one by Ali ghodsi and Nando de freitas are also good

    • @carlosmspk
      @carlosmspk 5 ปีที่แล้ว

      My teacher is apparently using this exact course as a basis. The power points are super similar and all!

  • @chuxabanum297
    @chuxabanum297 5 ปีที่แล้ว +16

    Prof. Yaser is a great Teacher. I'm seeing this for the first time (October 2019). Still the best.

  • @hyiux
    @hyiux 11 ปีที่แล้ว +62

    After Gilbert Strang's Linear Algebra course, probably the best course on the web.

    • @stanlee8134
      @stanlee8134 6 ปีที่แล้ว +1

      Definitely agree

    • @johnk8174
      @johnk8174 6 ปีที่แล้ว +1

      High praise; so far it seems so

  • @gehadhisham2539
    @gehadhisham2539 4 ปีที่แล้ว +38

    Very proud of my country Egypt and of the brilliant prof: Yaser

    • @AhMedKhaled-om8ly
      @AhMedKhaled-om8ly 3 ปีที่แล้ว +5

      مش متخيلة انا قاعد مبسوط منه ازاي طول المحاضرة
      جودة المحتوي مذهلة ما شاء الله

  • @luizmt2
    @luizmt2 7 ปีที่แล้ว +11

    One of the best teachers I have ever seen! Congratulations, Professor Mustafa!

  • @basitbinmujeeb447
    @basitbinmujeeb447 3 ปีที่แล้ว +7

    2021, and still it's a diamond. Kudos to the teacher.

  • @mandos9
    @mandos9 6 ปีที่แล้ว +1

    this guy knows a lot about a lot, you can tell by the confidence with which he navigates the subject and how he is aware of the limits of the theory

  • @kashishpatel81
    @kashishpatel81 8 ปีที่แล้ว +14

    Great thing is i can learn Machine Learning from one of the best professor in the world and bad luck is even not single professor aware about ML in my collage.

    • @WhoForgot2Flush
      @WhoForgot2Flush 6 ปีที่แล้ว +11

      You should try a college instead of a collage, you may have better luck.

  • @VR_Wizard
    @VR_Wizard 9 ปีที่แล้ว +52

    If you dont understand everything watch it again I some how missed all the important parts the first time and was confused but then I watched it a second time and it was amazing. I also like how he is smiling if he gets a question he can answer. :D
    Great lecture.

    • @zkzks
      @zkzks 8 ปีที่แล้ว +11

      I THINK all machine learning lectures have to be watched twice :D

    • @danielgray8053
      @danielgray8053 3 ปีที่แล้ว +1

      It's good to hear this. Yeah I do the same. I'm sick of all the people on here saying they watch it at 1.25 speed. I guarantee I am getting a better job than those people.

  • @mario1ua
    @mario1ua 5 ปีที่แล้ว +4

    48:05 It's some kind of revelation. I'm enjoying this lecture so much! Thank you!
    And Yaser is so intelligent and pleasant person.

  • @VipinMaurya9
    @VipinMaurya9 5 ปีที่แล้ว +4

    For a beginner this is the course I find the best to start with. Thank You Professor.

  • @seebeess
    @seebeess 11 ปีที่แล้ว +80

    Am I the only one who's addicted to Prof. Abu-Mostafa's adorable accent?

    • @mohamedbalshy3105
      @mohamedbalshy3105 7 ปีที่แล้ว +2

      he is egyptian BTW

    • @shamsuddeen2004
      @shamsuddeen2004 6 ปีที่แล้ว

      I am bro

    • @est9949
      @est9949 6 ปีที่แล้ว

      No, actually it's hard to understand. The reason I endure his accent is his math talent, which is the most important factor.

    • @vickyys3301
      @vickyys3301 5 ปีที่แล้ว +4

      He sounds like king julian from madagascar

    • @astaconteazamaiputin
      @astaconteazamaiputin 4 ปีที่แล้ว +1

      Nope. It's a really nice accent. Makes everything sound friendly ^.^

  • @m13m
    @m13m 8 ปีที่แล้ว +19

    This professor is awesome and funny at the same time.

  • @sinabaghaei3504
    @sinabaghaei3504 2 ปีที่แล้ว

    In 2022 still I find his way of teaching way more informative rather than any recourses online or at Uni . great job

  • @godfreynyirenda470
    @godfreynyirenda470 6 ปีที่แล้ว

    I had to come to comments section and search the man behind this lecture.
    A wonderful lecturer wish all teachers could teach like him

  • @shrikantstu4725
    @shrikantstu4725 3 ปีที่แล้ว +2

    00:00:27 - Outline of course
    00:02:37 - Lecture 1 starts here
    00:03:14 - Outline of The Learning Problem

  • @j.freseyolanda1036
    @j.freseyolanda1036 4 ปีที่แล้ว

    My Learning Algorithm predicts that the professor loves his tea.
    This is what I call "A real Professor" , congratulations.

  • @Nakameguro97
    @Nakameguro97 3 ปีที่แล้ว +1

    Crystal clear exposition! This is the best intro to ML I have seen on YT.

  • @ebtehalturki6329
    @ebtehalturki6329 3 ปีที่แล้ว +1

    Perfect way of giving lesson.. I have never understood ML course this way

  • @marwaelsayed3442
    @marwaelsayed3442 6 ปีที่แล้ว

    l came here by chance and i surprised that this prof is Egyptian ,i am really proud of you sir you have a great style in teaching

  • @rohitsurana9281
    @rohitsurana9281 9 ปีที่แล้ว +27

    Excellent lecture. Way better than stanford because of low resolution and poor audibility.

  • @chriswalker4923
    @chriswalker4923 6 ปีที่แล้ว +1

    Thank you Professor Yaser Abu-Mostafa and to all you collogues and contributors. Most helpful and enjoyable. I'm impressed with Caltech.

  • @neilbryanclosa462
    @neilbryanclosa462 7 ปีที่แล้ว

    This kind of learning resource is useful for providing professionals with the right intuition and conceptual framework in the technology of Machine Learning. More power to California Institute of Technology and Professor Yaser Abu-Mostafa.

  • @anyu8109
    @anyu8109 7 ปีที่แล้ว

    The professor explains everything so clearly! The video and audio have high quality! The questions asked by the students have high quality!

  • @mathisalwaysright4048
    @mathisalwaysright4048 2 ปีที่แล้ว

    Great video! I like the puzzle part (53:00) This is the reason why I don't like most IQ tests. They show you just 5 sometimes even unordered pictures and want you to choose the one which belongs to them. There are many solutions usually.

  • @mwambua
    @mwambua 7 หลายเดือนก่อน

    I'm just getting started learning ML. This lecture provides an excellent overview of the field.

  • @suvrotica
    @suvrotica 3 ปีที่แล้ว

    This is the best Machine Learning course. 11 out of 10.

  • @generalflaviusaetius1997
    @generalflaviusaetius1997 8 ปีที่แล้ว

    who on earth disliked and downvoted this video?..the professor's teaching from just the first lesson has inspired me to research into other ML ANNs beside just the perceptron like the Hopfield NN and gain a megatonne of info...from just the first damned lesson..and i was simply clicking on recommendations goddamit...had no clue about ML..those damned lucky students

  • @edvandossantossousa455
    @edvandossantossousa455 3 ปีที่แล้ว +4

    Meus sinceros agradecimentos aos tradutores, ao caltech e ao professor. Conteúdo de qualidade e gratuito.

  • @ShoaibKhan_iamsrk
    @ShoaibKhan_iamsrk 7 ปีที่แล้ว +1

    Seriously, this is the best lecture on #ML available on web. Brilliant explanation and the examples at the beginning (specially the Credit approval one) is well explained and fits exactly into introduction to ML.

  • @jaikishank
    @jaikishank 4 ปีที่แล้ว

    It was great presentation. Kudos to Prof Yaser Abu-Mostafa for the same. It brought clarity on the fundamentals which were not clear from the books.

  • @loganphillips1674
    @loganphillips1674 6 ปีที่แล้ว

    Wow, I could not find any other resource that explained the intuition behind using the inner product. What a great teacher.

  • @YashChavanYC
    @YashChavanYC 6 ปีที่แล้ว +27

    My Learning Algorithm predicts that the professor loves his tea.

    • @Anna_K_
      @Anna_K_ 4 ปีที่แล้ว +1

      I think it rather "prefers tea to other drinks"

    • @blackwhite1257
      @blackwhite1257 7 หลายเดือนก่อน

      He might be the mathematical equivalent of King Henry, for Professor is one of the best AI teachers ever and King Henry loved his tea

  • @nilarunm
    @nilarunm 6 ปีที่แล้ว

    Awesome teacher, teaching from realization...everything he makes so easy...kind of idol to me, added with his smile and ascent ...yes Sensational..

  • @ayaabdallah8915
    @ayaabdallah8915 ปีที่แล้ว +104

    Anyone watching in 2024?

  • @shadishadi4478
    @shadishadi4478 2 ปีที่แล้ว

    Big appreciation for whoever uploaded this video, It's such a huge help.

  • @GianlucaUK
    @GianlucaUK 6 ปีที่แล้ว

    Straight to the point with practical examples. After 10 minutes you already know what the course is about and if it is interesting to you. The best Lecture 1 of a course I have seen on any subject :)

  • @alialk1384
    @alialk1384 7 ปีที่แล้ว

    I think it is the best machine learning introduction I have watched so far

  • @lucccar
    @lucccar 6 ปีที่แล้ว

    The perceptron function hypothesis is actually a logistic regression, that guy makes it quite simple to understands the difference between the hypothesis/target function and the learning algorithm, the later is the true innovation for statisticians and econometricians.

  • @smirned0ff
    @smirned0ff 10 ปีที่แล้ว

    One of the most wholesome lectures I have ever experienced, and especially useful for me and my particular situation. Thank you very much indeed!

  • @StuartBranham
    @StuartBranham 11 ปีที่แล้ว +4

    Love this. Thanks for the lectures CalTech! Perfect for the stay at home, wannabe grad student. (Like me!)

  • @khubaibraza8446
    @khubaibraza8446 6 ปีที่แล้ว +2

    Best lectures of machine learning with clear voice :) Thanks Professor

  • @yuwuxiong1165
    @yuwuxiong1165 6 ปีที่แล้ว

    Enlightening analogy on unsupervised learning (learning Portugal language). Great teacher!

  • @hamdisha1
    @hamdisha1 4 ปีที่แล้ว +4

    what a nice Professor : ) Keep going forward to deliver such an amazing lecture.

  • @williamperroni8357
    @williamperroni8357 7 หลายเดือนก่อน

    Que obra! Por sua naturalidade de conhecer profundamento o que ministra, com generosidade e vontade ao ensinar, que acaba por nos revelar que o mestre é insubistituivel !!! Por qquer processo racional que seja, como eu depreendo daquilo que disseram Gödel, Newton da Costa, Fco. Dória e ai vai ... mestres ... E faz de um autor e professor como este um daqueles que a gente sente que nos liberta pela informação e não o oposto!

  • @jessicas2978
    @jessicas2978 9 ปีที่แล้ว +3

    Good lesson, really can learn a lot. The best part is easy to understand and very interesting

  • @yifanding7164
    @yifanding7164 2 ปีที่แล้ว

    Amazing, best introduction to ML I have heard so far

  • @ömer-altinbas
    @ömer-altinbas 9 ปีที่แล้ว +12

    جهد رائع و عمل عظيم .. مشكور دكتور ع الشرح الواضح

  • @adityapasari2548
    @adityapasari2548 8 ปีที่แล้ว +2

    Wow, superb lecture. Decided to watch the whole series. Thanks for uploading it.

  • @MattMcConaha
    @MattMcConaha 9 ปีที่แล้ว +54

    Ray Romano knows a lot about machine learning.

    • @fernandojackson7207
      @fernandojackson7207 8 ปีที่แล้ว

      +Matt McConaha : Raymond, Raymond, Raymond. Everybody talks about Raymond. Only Raymond. E....EEverybody loves Raymond.

    • @putinscat1208
      @putinscat1208 8 ปีที่แล้ว +2

      +Matt McConaha Na, that's a young Netanyahu...

    • @MrAmgadHasan
      @MrAmgadHasan 8 หลายเดือนก่อน

      Don't compare this great teacher with a genocidal war criminal ​@@putinscat1208

  • @intuithue
    @intuithue 7 ปีที่แล้ว +4

    This lecturer is incredible

  • @ksankar42
    @ksankar42 11 ปีที่แล้ว

    Very well done. Obviously Prof.Yaser has an in-depth knowledge and has put in lot of thought in creating this class. Good work, Sir.

  • @ragiaibrahim6648
    @ragiaibrahim6648 9 ปีที่แล้ว

    Many thanks for making this treasure online. Clear and straight forward.

  • @thatguy1000001
    @thatguy1000001 10 ปีที่แล้ว

    Great first lesson. I'm trying to get better at "skipping the introduction", and this is one instance I'm glad I did. Thanks! :)

  • @Googlu1
    @Googlu1 6 ปีที่แล้ว

    god has a new name and he has research & teaching interests in machine learning- simply wow Professor Yaser Abu-Mostafa. thanks and best regards

  • @aifan6148
    @aifan6148 8 ปีที่แล้ว

    I like the examples given by the professor! Vivid and thoughts provoking!

  • @BoJack32
    @BoJack32 9 ปีที่แล้ว +271

    I encourage people to watch this lecture at 1.25x speed.

    • @thomaselder4076
      @thomaselder4076 9 ปีที่แล้ว +8

      Jim Gorman I stepped it up to 1.5x :)

    • @nouyed
      @nouyed 9 ปีที่แล้ว +7

      Jim Gorman Very useful tip ! I recommend it too. :)

    • @xThoth19x
      @xThoth19x 9 ปีที่แล้ว +6

      Iqbal Nouyed Gunna one up you at 2x :P

    • @drbonesshow1
      @drbonesshow1 9 ปีที่แล้ว +7

      Jim Gorman As if these people don't talk fast enough.

    • @artispeedy
      @artispeedy 9 ปีที่แล้ว +5

      +Jim Gorman I kind of like this guy's voice though, and it doesn't sound as good at 1.5x speed.

  • @rohailkamran
    @rohailkamran 3 ปีที่แล้ว +1

    Examples of (h, a) where h belongs to H and a belongs to A:
    (Perceptron Model, Perceptron Learning Algorithm)
    (Neural Network, Back Propagation)
    (Support Vector Machine, Quadratic Programming)

  • @peidaniel4629
    @peidaniel4629 8 ปีที่แล้ว

    Greatest professor ever seen. Thank you!

  • @0xsuperman
    @0xsuperman 9 ปีที่แล้ว +1

    At 21:36, it seems to suggest the only changeable parts of the ML flow are 'learning algorithm' and 'hypothesis set' which are to be decided by the analyst. But what about feature extractions? Two analysts can be given the same data set but one can extract a better feature set based on a given X, for example.

    • @temp9417
      @temp9417 9 ปีที่แล้ว

      +Yellowknight888 Then that would be a different learning set (xn,yn).

    • @spencernash8309
      @spencernash8309 8 ปีที่แล้ว +1

      Yes and if you define the hypothesis set even if it just includes all possible solutions it will only work in a formal system ie a chess game or a game of go. Is it even learning at all? It is certainly not intelligence. In fact it is merely automation of actions defined by humans. Intelligence is the ability to find form a formerly undefined system. Humans are very good at it and do so very quickly. The difference between humans and machines is 4 billion years of intelligent (biology finds form out of a formless system) evolutionary learning that resulted in receptors and effectors that interact with the world. My research points to the fact that the actual human learning algorithms are extremely simple. The complexity comes from wiring 15 billion sensory and motor neurons into the brain. This simplicity is inevitable because neural intelligence emerged out of evolution so has to be based on simple units. The eye is a pin hole camera. The brain is a network of weighted balances provide more, less, the same information in continuous fashion. www.legonomics.org

  • @manjuhhh
    @manjuhhh 11 ปีที่แล้ว

    Excellent. Thank you Caltech and Prof Yaser Abu.

  • @mohammadriyaz4u
    @mohammadriyaz4u 4 ปีที่แล้ว

    What a great teaching..!!
    Salute you Sir..
    Very nicely explained and taught..
    Thank you..

  • @19daredevill
    @19daredevill 7 ปีที่แล้ว

    The best lecture series I have seen so far.

  • @Ashiqrh
    @Ashiqrh 12 ปีที่แล้ว

    Just started taking the online course and it exceeded my expectations. Love your teaching method and the "practical" topics included. Also thanks for including the QA session.

  • @parthivganguly2816
    @parthivganguly2816 8 ปีที่แล้ว +1

    This was a brilliant introduction to machine learning !

  • @kameshsingh7867
    @kameshsingh7867 2 ปีที่แล้ว

    Thank you Prof. Yaser, very useful lecture. thanks for sharing

  • @AllElectronicsGr
    @AllElectronicsGr 10 ปีที่แล้ว +29

    Sensacional!

    • @Pietrabentivi
      @Pietrabentivi 10 ปีที่แล้ว +1

      Neural Nets ?

    • @alexfranco664
      @alexfranco664 3 ปีที่แล้ว

      Ohh tu aí, mano. Sou seu fã, me ajudou em muitos mapas de Karnout na faculdade hehe

  • @tuke3541
    @tuke3541 4 ปีที่แล้ว

    Man... They had a better teacher in 2012 than ive got in 2020

  • @ChriNikoS
    @ChriNikoS 12 ปีที่แล้ว

    Very good lecture!!! He is also answering questions from the online audience!

  • @amalalahmari3716
    @amalalahmari3716 3 ปีที่แล้ว

    2021 , you are still the best lecturer

  • @adityaavs
    @adityaavs 7 ปีที่แล้ว

    Top Class Lecture. Great Professor. Brilliant.

  • @Raphael0Baltar
    @Raphael0Baltar 9 ปีที่แล้ว +2

    now this is a great teacher !

  • @faezbhanji9592
    @faezbhanji9592 2 ปีที่แล้ว

    Breathe of fresh air. Thank you sir

  • @raveeshsharma9236
    @raveeshsharma9236 11 ปีที่แล้ว +2

    Awesome Video.. A must watch for any person interested in Machine Learning OR any person who wants to get interested in Machine Learning :)

  • @JohnWasinger
    @JohnWasinger 9 ปีที่แล้ว +1

    The sound cuts out briefly at 46:10 and at 46:13. At first I thought it was a buffering glitch on my phone. I re-observed the glitch on both my laptop and kindle.

  • @venkateshprasad6432
    @venkateshprasad6432 6 ปีที่แล้ว

    i think one of the best introduction videos to machine learning! :) thanks a lot

  • @milanpatel9939
    @milanpatel9939 3 ปีที่แล้ว

    Exceptional professor indeed !!!

  • @lilianedeaquino6685
    @lilianedeaquino6685 5 ปีที่แล้ว

    Wonderful! Many thanks to the channel for providing subtitles in Portuguese.

  • @farshidvarno3864
    @farshidvarno3864 7 ปีที่แล้ว

    Very simple, practical and understandable. Thanks

  • @cici_julja
    @cici_julja 7 ปีที่แล้ว

    I like his pronunciation. I'm even able to listen to him without subtitle.

  • @SSJIV
    @SSJIV 8 ปีที่แล้ว +1

    Excellent Introductory Lesson Professor :)
    Thank you for uploading it online :D

  • @brainstormingsharing1309
    @brainstormingsharing1309 4 ปีที่แล้ว +1

    Absolutely well done and definitely keep it up!!! 👍👍👍👍👍

  • @vishalmishra1937
    @vishalmishra1937 7 ปีที่แล้ว

    thnk u caltech n honourable professor for this noble work

  • @121pooja
    @121pooja 11 ปีที่แล้ว +1

    The Great Lecture Sir ,You have put in lot of thought in creating this Presentation
    . Brilliant work !!

  • @walterjuskamaytadiaz3413
    @walterjuskamaytadiaz3413 4 ปีที่แล้ว

    Excelente la introduccion al curso. Muy buen profesor.

  • @sakcee
    @sakcee 8 ปีที่แล้ว

    What an Excellent Professor!, Caltech Please upload more courses.

  • @AhmedAlaa-lm6pt
    @AhmedAlaa-lm6pt 5 ปีที่แล้ว +2

    Thank you for this great lecture.

  • @aamodkulkarni8489
    @aamodkulkarni8489 4 ปีที่แล้ว

    This man is great! Hats off!

  • @solidoxx
    @solidoxx 9 ปีที่แล้ว +2

    At 31:14, what does he mean by the "angle" of the two vectors, x and w?
    w is an array of weights, and Xn is an array of specific values for the "customer n".
    How does that translate to vectors in a space that have an angle between them?

    • @Gfoxvh
      @Gfoxvh 9 ปีที่แล้ว +3

      solidox cinci you can treat bold_w = (w1, w2, .... , wN) (you call it array of weights) as an N-dimensional vector. Values of components of bold_w will be coordinates of your vector in corresponding dimensions. The same applies to the array Xn. So, you will have two vectors in N-dimensional space. And with them you can define an angle between them, count dot product and so on...
      I hope this was helpful.

    • @solidoxx
      @solidoxx 9 ปีที่แล้ว

      But bold_w and Xn are N and M dimensional vectors, respectively, of completely different sizes and dimensionality. It feels like computing the angle between apples and oranges.

    • @Gfoxvh
      @Gfoxvh 9 ปีที่แล้ว +3

      solidox cinci In earlier moments he defines the model as SUM(xi times wi) where i = from 1 to d. This means that and bold_xi and bold_w are in the same d-dimensional space.

    • @xThoth19x
      @xThoth19x 9 ปีที่แล้ว

      Vahe Hakobyan And since they are of the same dimension, the inner product is basically just "Are they facing the same way with respect to the x-axis?"

  • @马赛克斯
    @马赛克斯 9 ปีที่แล้ว

    Very interesting and practical, a good start today!

  • @joxacabe
    @joxacabe 3 ปีที่แล้ว

    Excelent, best lecture on internet 10/10

  • @johnk8174
    @johnk8174 6 ปีที่แล้ว

    I finally got the book and I'm glad I did.

  • @ZhaoXiliang
    @ZhaoXiliang 3 ปีที่แล้ว

    Great lectures,wish more videos from the professor

  • @lianszhao
    @lianszhao 11 ปีที่แล้ว

    Great course, in depth coverage, and wonderful presentation.

  • @raviagrawal7875
    @raviagrawal7875 6 ปีที่แล้ว

    thanks sir,this lecture is very helpful for every beginers

  • @brian-zf4pi
    @brian-zf4pi 4 ปีที่แล้ว

    @32:02 are the diagrams flipped for y=+1 and y=-1. if the dot product of w and x was positive the y would be positive not negative? but in the top image w and x are not facing each other