X! = X³ - X

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น •

  • @deepakchandra9600
    @deepakchandra9600 9 หลายเดือนก่อน +56

    Great!! I just wish I was born 70 years later, then I would be learning maths in this wonderful way (aged six )!!😊

    • @GeezSus
      @GeezSus 9 หลายเดือนก่อน

      6?

    • @deepakchandra9600
      @deepakchandra9600 9 หลายเดือนก่อน +4

      @@GeezSus Yup. Since I'm 76 😊

    • @XanderAnimations
      @XanderAnimations 9 หลายเดือนก่อน +3

      I love seeing these comments of elders still learning math! It's an oddly wholesome and strange thing to me since I live in a country where elders are very old-fashioned and aren't very educated.

    • @GeezSus
      @GeezSus 9 หลายเดือนก่อน

      @@deepakchandra9600 Oh my bad, I thought you mistyped 60

    • @deepakchandra9600
      @deepakchandra9600 9 หลายเดือนก่อน +1

      @@GeezSus No problem! !😊🤪

  • @amtep
    @amtep 9 หลายเดือนก่อน +28

    Yeah this way you can also be sure there are no other solutions

  • @JourneyThroughMath
    @JourneyThroughMath 9 หลายเดือนก่อน +12

    Nice job! I always enjoy your content but that was a much more satisying ending

  • @Dalroc
    @Dalroc 8 หลายเดือนก่อน +1

    x! = x(x-1)!
    x^3-x = x(x^2-1)
    So we can cancel the x and get the equality: (x-1)! = x^2-1
    (x-1)! = (x-1)(x-2)!
    x^2-1 = (x-1)(x+1)
    So we can cancel the (x-1) and get the equality: (x-2)! = (x+1)
    Assuming no gamma function x >= 2.
    Since 0! = 1! = 1 < x+1 we know that x-2 >= 2 and x >= 4.
    Factorials larger than 2! is even, so x+1 has to be even, thus x has to be odd.
    Factorial is multiplicative and quickly increasing and x+1 is additive and slowly increasing, so the solution has to be small.
    Try the first odd integer larger than 4.
    (5-2)! = 5+1
    3! = 6
    So x=5 is our solution.

  • @salloom1949
    @salloom1949 9 หลายเดือนก่อน +1

    This method is much better than the previous one. I understand this method easily and clearly. THANK YOU.

  • @stevenboelke6661
    @stevenboelke6661 3 หลายเดือนก่อน

    Love your energy, love your titles, love the chalk. Keep doing what you're doing.

  • @ReyazulislamReayal
    @ReyazulislamReayal 9 หลายเดือนก่อน +8

    Thanks sir, this class is so helpful to me👍😎

  • @saiprasadpadhy6832
    @saiprasadpadhy6832 9 หลายเดือนก่อน +3

    Very clear explanation!

  • @slayk3604
    @slayk3604 9 หลายเดือนก่อน +5

    Dude your voice is just perfect

  • @kurtmager1626
    @kurtmager1626 3 หลายเดือนก่อน +1

    Here's what I came up with.
    x!=x³-x
    x(x-1)!=x(x²-1)
    (x-1)(x-2)!=(x-1)(x+1)
    (x-2)(x-3)!=x+1
    (x-3)!=(x+1)/(x-2)
    (x-3)!=1+(3/(x-2))
    Now (3/(x-2)) must be an integer. Since 3 is prime, (x-2) must either equal 1 or 3, but (x-2) cannot equal 1 becauss x=3 would not satisfy the given equation.
    So x-2=3, and so x=5.

  • @vitotozzi1972
    @vitotozzi1972 9 หลายเดือนก่อน

    Really fantastic equation and fantastic explain too..... Cool!

  • @edvardm4348
    @edvardm4348 8 หลายเดือนก่อน +1

    Levels in math in my country (Finland) have been declining for some time. Had we this guy in all our schools (so we need to invent cloning) I think we wouldn't have any issues at all.

  • @dirklutz2818
    @dirklutz2818 6 หลายเดือนก่อน

    Or...n!=n+3. So, n*(n-1)!=n(1+(3/n)). And (n-1)!=1+3/n. The only way to get an integer is when n=3. Thus, (3-1)!=1+(3/3)=2. Indeed, 2!=2. Therefore x=5.

  • @faustobarbuto
    @faustobarbuto 9 หลายเดือนก่อน +2

    Very nice, very clever.

  • @Mustapha.Math_at_KUSTWUDIL
    @Mustapha.Math_at_KUSTWUDIL 9 หลายเดือนก่อน +9

    Nice one

  • @rssl5500
    @rssl5500 9 หลายเดือนก่อน +1

    I guessed 5 but this is a very beautiful proof that 5 is only natural solution (although for most parts of high school we don’t learn factorial for non natural numbers)

  • @Kizaco
    @Kizaco 9 หลายเดือนก่อน +1

    I just instantly recognized the solution as 5 since 5!=120 and 5^3 = 125. But this proof is definitely very elegant and interesting.

    • @chaosredefined3834
      @chaosredefined3834 8 หลายเดือนก่อน

      That works, except you then need to show that there are no other solutions.

  • @surendrakverma555
    @surendrakverma555 8 หลายเดือนก่อน

    Very nice explanation Sir. Thanks 🙏

  • @JustDeerLol
    @JustDeerLol 9 หลายเดือนก่อน +7

    👍

  • @glorrin
    @glorrin 9 หลายเดือนก่อน +2

    This is so cool.
    I was like, does it work with only 3 ? no it would work with any prime number...
    Actualy it would work with any number, just the number of cases to check would go up.
    So now I have a way to solve
    x! = x^n + a
    for any n in N and a in Z

    • @abulhasbullah8120
      @abulhasbullah8120 6 หลายเดือนก่อน

      As an engineer student, i say u should use newton rhapson method or any numerical method so u get numerical answer, but if u insist to get the analytical solution probably change factorial into stirling approximation will help

    • @glorrin
      @glorrin 6 หลายเดือนก่อน

      ​@@abulhasbullah8120 sorry mate I do math for fun, the process is more important than the result.

  • @childrenofkoris
    @childrenofkoris 3 หลายเดือนก่อน +1

    I JUST LOVE THIS, YOU MADE MY DAY SIR, AND I LOVE ALL UR VIDeos

    • @PrimeNewtons
      @PrimeNewtons  3 หลายเดือนก่อน

      Glad you enjoyed it!

  • @StandardLoop
    @StandardLoop 4 หลายเดือนก่อน

    Great video

  • @jamesbrewer6970
    @jamesbrewer6970 9 หลายเดือนก่อน +6

    it doesnt matter that much but when you wrote (x-1)! = (×-1)(x-2)!, you needed to have checked that x-2 > 0. If for instance X was 1, you dve have written 0 * (-1)! I get that you proved this wasnt true when cancelling but I think it would have been important to remind people when rewriting x! that everything in the bracket must be above 0 as -1! is undefined

    • @juergenilse3259
      @juergenilse3259 9 หลายเดือนก่อน

      He had to check, if x>1,because for x=2, (x-2)° i*is* defined and has the value 1.

  • @pierre2988
    @pierre2988 8 หลายเดือนก่อน

    You are a fantastic teacher !
    How many caps do you have ?

  • @רובימהאנדרואיד
    @רובימהאנדרואיד 9 หลายเดือนก่อน

    So nice. Thank u again ❤

  • @memotto123
    @memotto123 9 หลายเดือนก่อน

    10:08 Eyes are talking.

  • @adierez1154
    @adierez1154 9 หลายเดือนก่อน +1

    Thank you

  • @JSSTyger
    @JSSTyger 9 หลายเดือนก่อน

    Great job.

  • @davidbrisbane7206
    @davidbrisbane7206 9 หลายเดือนก่อน +3

    We could use induction to show that x³ - x < x!, where x >= 6 and then just try the cases x = 1 through 5 to see if they are solutions.

    • @niloneto1608
      @niloneto1608 9 หลายเดือนก่อน +1

      You mean the opposite right? When x=6, we already have 6³-6 210

    • @davidbrisbane7206
      @davidbrisbane7206 9 หลายเดือนก่อน

      @@niloneto1608
      I changed it

  • @erickaci6533
    @erickaci6533 9 หลายเดือนก่อน

    Great ! ❤

  • @marcelo372
    @marcelo372 7 หลายเดือนก่อน

    excelente.

  • @notstorm
    @notstorm 9 หลายเดือนก่อน

    Plotting two graphs, one of x! and one of x^3-x reveal that there are two intersection points.
    one intersection is at obviously x = 5 and the other one is at x=1.374.
    Can someone please explain me where do we lose the other root?

    • @juergenilse3259
      @juergenilse3259 9 หลายเดือนก่อน +2

      factorial is a function onl defined for non negative whole numbers. You can extent factorial to a function, that is also defined for fractions, but that is the gamma function, whis is not the same as factorial, because factorial is only defined for non negative whole numbers. Because of that, there is onl 1 solution.

    • @notstorm
      @notstorm 9 หลายเดือนก่อน

      @@juergenilse3259
      Oh okay got it, thanks man

  • @77mxb1
    @77mxb1 9 หลายเดือนก่อน

    There is only one solution with respect to the positive integers. If we want to find all real solution, we need to consider the continuous version of the factorial function, namely the Gamma Function. Under the reals, this equation has more than one solution

  • @BrianLewis-r5i
    @BrianLewis-r5i 9 หลายเดือนก่อน

    Cool❤

  • @d.yousefsobh7010
    @d.yousefsobh7010 9 หลายเดือนก่อน

    We can solve by line numbers

  • @marvinochieng6295
    @marvinochieng6295 9 หลายเดือนก่อน +1

    Some day i want to see Newtons using a blackboard eraser to wipe the board clean ASMR style

  • @GeezSus
    @GeezSus 9 หลายเดือนก่อน +1

    that took 12 minutes?

  • @Pramit1156
    @Pramit1156 9 หลายเดือนก่อน +1

    (-1)! exists ? What is it ?

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน

      Ha! You caught it. That was a slip. My mind drifted to inputs in the gamma function

    • @Pramit1156
      @Pramit1156 9 หลายเดือนก่อน

      @@PrimeNewtons I also got confused. But don't worry ,we all make mistakes , that's how we learn , and our videos are awesome. I am grateful for your videos.

    • @adw1z
      @adw1z 9 หลายเดือนก่อน

      (-1)! == gamma(0) does not exist, in the sense that is a simple pole of the gamma function (as are all integers

  • @michel6456
    @michel6456 9 หลายเดือนก่อน +1

    I have
    3=0 🤦🏼‍♂️😂

  • @jamal369
    @jamal369 9 หลายเดือนก่อน +2

    Hello

  • @sgh5985
    @sgh5985 9 หลายเดือนก่อน

    happy ending 🤨🤨

  • @ahnafhasankhan2781
    @ahnafhasankhan2781 9 หลายเดือนก่อน

    Who decide to use gamma function instead integral sol

  • @jamesharmon4994
    @jamesharmon4994 9 หลายเดือนก่อน

    I thought the other video was quite clever.

  • @universe7833
    @universe7833 8 หลายเดือนก่อน

    X³+x=33 nasıl oluyor bir aydinlatsaniz beni

  • @annacerbara4257
    @annacerbara4257 9 หลายเดือนก่อน +1

    factoring on the right and dividing both parts by x(x-1), x=0 and x=1 are clearly to be discarded, we immediately obtain:
    (x-2)! = x+1 ,with x>2
    by trial and error starting from x=3 the solution x=5 is found correct.

  • @dalesmart9881
    @dalesmart9881 9 หลายเดือนก่อน

    Love your videos, but this ciould have been done much easier using guess and check at the point of (x-2)!= x+1 with maximum of 3 consecutive trials. This is because we kniw that (x-2)! has to be:
    1. Z+
    2. >= 2

    • @enderguz3213
      @enderguz3213 9 หลายเดือนก่อน +3

      The point of the video was to show a way without guessing and checking. He did another video on the same problem before with the method you described.

  • @comdo777
    @comdo777 9 หลายเดือนก่อน +1

    asnwer=2 isit

  • @WagesOfDestruction
    @WagesOfDestruction 7 หลายเดือนก่อน

    If you just used a brute force method of solving, it is faster, here you need to test x=0,1 and 2 and do a lot of maths.

  • @benjaminkarazi968
    @benjaminkarazi968 9 หลายเดือนก่อน

    Hello,
    This is the English or American way of approaching solving the problem; nevertheless, it is not mathematics but trial and error, guessing and assuming. Guessing and presuming are not mathematical formulas.
    Truly,

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน +3

      I have seen your posts on other platforms. Please give me a reason to take this comment seriously.

    • @benjaminkarazi968
      @benjaminkarazi968 9 หลายเดือนก่อน

      @@PrimeNewtons
      Hello,
      Mathematics mimics physics to achieve formulas, which most of the time are incorrect or lies; if God used Sin, Cos, Log, Ln, e, g, G, π (3.14159265358979323846264338327950288419...→
      .∞, ETC., the universe would have destroyed itself before its creation. Most of the mathematics, such as the above signs, are lies to be valid upon Crooks's agreements. Mathematics is a tool (formula) to solve problems, not to keep assuming paths over and over again to find solutions in immature methods.
      For instance, by using the same strategies to solve 77e⁷⁷!=1.81880373878e¹⁴⁵ rebelliously, it shall take many million years to acquire the accurate number.
      As mathematics communication, nuclear physics, nuclear cosmology, mechanical, electrical, and electronics scientists reject the human coherence of knowledge because of illogicality; people think they are alive and perceive the past's future, not the present!
      Genuinely,

  • @WhiteGandalfs
    @WhiteGandalfs 9 หลายเดือนก่อน

    Well... hmmm... There is no potential of generalization, as i'm trying to reverse the process. It works out just for the one value of "x == 3". Since there is no generalization potential, the argumentation with "the right way to show" has a smell of... let's call it "artefact hunting". By accident, for this unique small factor, the decomposition "works", but neither is the decomposition necessary because of the pettiness of the factor, nor would the method be generalizable for arbitrary resulting values. I must admit that driven by pure curiosity, i too took that same way of decomposition (since in the math channels i had subscribed to, this decompositions into binoms seem to be the stick horse of all authors), but nevertheless i am not impressed by the example.

    • @davidgagen9856
      @davidgagen9856 9 หลายเดือนก่อน

      I'm not sure I understand what you mean?

    • @WhiteGandalfs
      @WhiteGandalfs 9 หลายเดือนก่อน

      @@davidgagen9856 If you - for example - try to setup an instance of this problem with arbitrary parameters (from the solution back to the problem presentation), you end up with constructs that are not decomposible as in this very specific case.

    • @nwoDekaTsyawlA
      @nwoDekaTsyawlA 9 หลายเดือนก่อน

      I believe the explanation shown is as rigorous as it has to be. The procedure used does not have to be generalizable, it is enough to get to the equation where an integer expression is equal to a prime number. While it's true that the two cases work only when the number is prime, you can still do a similar procedure if the number is not prime, just use prime decomposition. There would just be more cases, it doesn't mean that it's wrong.
      My only two nitpick with the video are: 1) the initial question should have "x is an integer". 2) it must be shown that (x-2)! Is allowed.
      The rest follows pretty much flawlessly, great video.