The Hardest Problem in Type Theory - Computerphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 พ.ย. 2024

ความคิดเห็น • 285

  • @boredbytrash
    @boredbytrash 3 ปีที่แล้ว +397

    RIP Martin Hoffmann :( Very sad story.
    He was my professor, so it hit us students hard.

  • @viczking8520
    @viczking8520 3 ปีที่แล้ว +426

    you know the camera guy is lost when he hasn't said a word for 20 min straight!

    • @NuclearCraftMod
      @NuclearCraftMod 3 ปีที่แล้ว +28

      I'd say the one place where I got quite lost and had to rewatch was the introduction of reflexivity, but the problem is that, if I was Sean, I wouldn't know what to ask other than "I didn't get it... can you explain that again?" :P

    • @ChrisLee-yr7tz
      @ChrisLee-yr7tz 3 ปีที่แล้ว +8

      You can include me in that...

    • @yaeldillies
      @yaeldillies 3 ปีที่แล้ว +17

      ​@@NuclearCraftMod You know how natural numbers are defined by induction?
      You have two ways to make natural numbers:
      - The first is `zero : ℕ`
      - The second is `succ : ℕ → ℕ` (so for any `n : ℕ`, we have `succ n : ℕ`. Think of `succ n` as `n + 1`, but keeping in mind we haven't defined addition yet).
      And you also have the rules that all naturals are defined like that ("no junk") and no natural is represented in two different ways by `zero` and `succ` ("no confusion").
      This is how we define *inductive types*, using the motto "no junk, no confusion".
      This motto ensures that to define a function `ℕ → α`, we only need to define it on `zero` and on `succ`. This is called the "elimination rule" (as opposed to the "introduction rules" `zero` and `succ n`). And when you think about it, this is *exactly* your usual induction! Defining something for `zero` is the base case, and defining something for `succ` is the induction hypothesis.
      Well, equality is defined as an inductive type as well, but with only one introduction rule:
      - `refl : a = a`
      In turn, the elimination rule is simpler than for naturals. It says "To prove that a = b implies some property P(a, b), it suffices to prove P(a, a)".
      In the video example, if you take P = sym, you get "To prove that a = b implies b = a, it suffices to prove a = a". And `a = a` is true by `refl`, so we're done.

    • @NuclearCraftMod
      @NuclearCraftMod 3 ปีที่แล้ว +5

      @@yaeldillies Thanks a lot for the extra info regarding inductive types, as that does help better appreciate the form of the arguments :)
      However, really it was the fact that there is only that one introductory definition of equality that I didn’t understand - I just accepted it for the sake of the rest of the video.
      It’s not as easy for me to see how ‘refl’ is “enough” in the same way ‘zero’ and ‘succ’ are for the naturals, whether defining all equality terms, defining functions or writing proofs.

    • @meithecatte8492
      @meithecatte8492 3 ปีที่แล้ว +2

      @@NuclearCraftMod Note that the constructors (here, just refl) should only handle the cases where our property (equality) holds. In any case where your equality relates something other than values of a type directly, such as "a + b = b + a", that's either because it hasn't yet been reduced to canonical form, or it contains free variables (most commonly they're bound outside with a forall).
      Now, once you actually substitute something for these variables and reduce fully, the only case that needs handling is that a value is equal to itself. Does that help?

  • @_..---
    @_..--- 3 ปีที่แล้ว +153

    "people at the time when this was a problem said, oh yeah it's easy, we can do it and then went away and said oh hang on it doesn't work" so many problems are underestimated like this.

    • @recklessroges
      @recklessroges 3 ปีที่แล้ว +13

      The whole of society is constructed on just such a house of cards, where almost every single one is a presumption or underestimation or overestimation.

  • @Bolpat
    @Bolpat 3 ปีที่แล้ว +19

    You made me cry the first two seconds. He was supposed to be my bachelor's thesis advisor, but went missing before we got started. Such a loss for the world.
    I'll never go hiking alone.

  • @bobliboggin7375
    @bobliboggin7375 3 ปีที่แล้ว +12

    Please, enable automatic subtitles. Non English speakers have a hard time understanding this man accent, and subtitles help a lot.

  • @AndreasHontzia
    @AndreasHontzia 3 ปีที่แล้ว +89

    6:37 Iconic: "… because I am a computer scientist, ja." 🤘

  • @LindaRistevski
    @LindaRistevski 3 ปีที่แล้ว +60

    Prof T always has amazing explanations. RIP M Hofmann. Will be happy to see more about type theory on here.

  • @k.c.sunshine1934
    @k.c.sunshine1934 3 ปีที่แล้ว +117

    When one knows the depth that this professor knows, it is irrelevant which side goes outside on your tee-shirt.

    • @ryth1441
      @ryth1441 3 ปีที่แล้ว +4

      😭😭😭

    • @icollectstories5702
      @icollectstories5702 3 ปีที่แล้ว +16

      Perhaps he is proving an inverted shirt is still a shirt.
      Or he knows this is the side with fewer stains.🙃

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +15

      He is just proving that the generic type for “t-shirt” can still represent the category of all t-shirts, be it folded, rotated or inverted!

    • @shigekax
      @shigekax 2 ปีที่แล้ว +1

      I have a shirt of the same kind of which the normal side is the reverse and it raises question but it's a nice shirt

    • @jawad9757
      @jawad9757 ปีที่แล้ว +2

      he's ascended beyond the material realm

  • @MaxPicAxe
    @MaxPicAxe 3 ปีที่แล้ว +16

    I've been working on a programming language where equality of types etc are necessary (for example, are two state machines equal even if they are encoded differently), and this video was very beneficial to my research. When you mentioned how a simple boolean can be encoded in different ways, it made me feel like there is information about what I'm looking for already out there and that I'm not in some obscure dead zone that hasn't been entered before.
    (edit: I probably phrased this comment very badly haha)

    • @up4life108
      @up4life108 3 ปีที่แล้ว +4

      Look up isomophism of algebraic data types if you want to know how more "complex" types can be "encoded" differently just like booleans as integers

    • @theb1z0n
      @theb1z0n ปีที่แล้ว

      What is the name of this language? Could you please share the link here?

    • @MaxPicAxe
      @MaxPicAxe ปีที่แล้ว +2

      @@theb1z0n Essence. It's not public unfortunately, it may not be public for many more years.

  • @fluffymcdeath
    @fluffymcdeath 3 ปีที่แล้ว +186

    I think I was following along right up until the Professor started talking.

    • @superscatboy
      @superscatboy 3 ปีที่แล้ว +8

      I knew I was already lost when the title said "type theory"

    • @SubTroppo
      @SubTroppo 3 ปีที่แล้ว +12

      I suspect that I am lost prior to clicking on the video, but the optimist in me cannot be thwarted.

    • @PapaWheelie1
      @PapaWheelie1 3 ปีที่แล้ว +1

      I was trying to click on something about food probably and I’m just wandering around here now

  • @ScottLahteine
    @ScottLahteine 3 ปีที่แล้ว +63

    When it comes to understanding formal systems and the limitations of proofs you can't do much better than "Gödel, Escher, Bach: An Eternal Golden Braid" by Douglas R. Hofstadter. Everyone interested in math, computers, science, or philosophy should read this classic (or at least as much of it as you can before the binding disintegrates). It will change how you see everything and inculcates a true appreciation for the challenges we face in obtaining that elusive thing we call "truth."

    • @franciscovarela7127
      @franciscovarela7127 3 ปีที่แล้ว +5

      Oh, you are cruel. I read the author's preface to the 20th anniversary edition of GED and now feel that this strange loop is falling into the abyss. I may never be the same.

    • @DocBree13
      @DocBree13 3 ปีที่แล้ว

      I’ve almost purchased this many times - now I’m convinced I need to read it - thanks :)

    • @donaldb1
      @donaldb1 3 ปีที่แล้ว +2

      That is a brilliant book. It is work of genius. But it is also extremely witty and entertaining. It covers deep, difficult subjects, but explains them superbly at a level anyone can get into, if they are prepared to put in the effort. It is a big book, but that is mainly because every idea is explained in more than one way. He comes at everything from multiple different angles until you feel it all fit together.

    • @seiryn3082
      @seiryn3082 2 ปีที่แล้ว

      When I was a kid, like 11-12 years, my dad show me this book because I know i loved math, and expected i will ony read the dialogues , which are interesting enough by themself. But i ventured in the classic parts and discovered the TNT. It truly changed me and enlighted me, because at this age I was the kid that provid the answer without the reasoning, considering it futile. This showed me the beauty of proofs.

    • @pmcate2
      @pmcate2 2 ปีที่แล้ว

      I would say hofstadters book is a primer for people who haven’t done many proofs. An even better book is Peter smiths An Introduction to Godels theorems.

  • @sappelsap534
    @sappelsap534 3 ปีที่แล้ว +53

    “If I replace both with refl, so I have to prove that relf is equal to refl then i refl”

  • @VincentKun
    @VincentKun 3 ปีที่แล้ว +42

    I studied the intuitionist Martin-Löf type theory in a course this year, it's really interesting but so obscure argument that few know.
    I would like other videos about this topic
    So sorry for Martin Hoffmann.

    • @musashi939
      @musashi939 3 ปีที่แล้ว

      Yeah it's a bit obscure. As someone who studied cs and understands all the basics here (group theory, isomorphisms,..) I didn't quite get the explanation, haven't had a lesson on type theory. Guess I need to read up on it this on my own. But very interesting topic nonetheless.

    • @theb1z0n
      @theb1z0n ปีที่แล้ว

      What is the university that you studied it in?

    • @VincentKun
      @VincentKun ปีที่แล้ว

      @@theb1z0n University of Turin in Italy, the course was called Formal methods for computer science

  • @georganatoly6646
    @georganatoly6646 3 ปีที่แล้ว +5

    interesting way to frame problems, as a programmer I'm used to thinking in the context of math or object related sets, but this looks like an interesting means of standardizing a mixture of the two to kind of more directly reason about it, and specifically a more direct means of incorporating logic through proofs

  • @kamilziemian995
    @kamilziemian995 3 ปีที่แล้ว +15

    Computerphile videos with Thorsten Altenkirch from 2017 make me seriously interested in homotopy type theory and type theory in general. So I want more videos about this subject on this channel.
    PS. I still try to crack syntax of type theory.

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +1

      His channel has more in-depth content!

  • @Jaylooker
    @Jaylooker 3 ปีที่แล้ว +7

    This provides some context to homotopy type theory since fundamental groupoids can be used

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว

      can be used ... what?

  • @AdrienLegendre
    @AdrienLegendre ปีที่แล้ว

    This is the type of presentation that motivates the viewer to want to learn more. Excellent Professor Altenkirch!

  • @mcspud
    @mcspud 3 ปีที่แล้ว +4

    I actually think this is the best video you've ever done. Prof Thorsten described it perfectly in a very easy to understand manner.

    • @cstrep
      @cstrep 3 ปีที่แล้ว

      but... can you prove it?

  • @Diapolo10
    @Diapolo10 3 ปีที่แล้ว +25

    I know that I'm kind of nitpicking, but I really wanted to say something; "strong typing" is not a well-defined term, and Professor Torsten probably should've used the term "static typing" instead.
    Static typing is when variables have set types, dynamic typing is when they don't. These are both well-defined and understood terms.
    Strong typing and weak typing have no real definitions, for instance I'd argue C is weakly typed because you can bypass the type system entirely with void pointers, while I could say Python is strongly typed because while its types are dynamic, they're strictly adhered to and nothing gets implicitly converted to another type.

    • @kmill31415
      @kmill31415 3 ปีที่แล้ว +11

      I'm not so sure these things are so clear cut -- you could say that Python is statically typed, too. It's just that every variable refers to a PyObject. What types do (from a type theory point of view) is specify the interface/API for a variable. Python gives you an interface where different methods of the PyObject get called in different situations.
      There's a related concept called a subtype, which consists of all those things with a specific type that satisfy some given property. PyObjects have a very rich interface, so there are many interesting subtypes in Python, for example by subclassing or duck typing. I think what makes typing "dynamic" is when a program checks whether something is in a given subtype at runtime. Unlike what Prof. Thorsten said, which is that everything can have at most one type, things can be in multiple different subtypes. Python objects can have a length, have arithmetic operations, be iterable, among many others subtypes.
      Even Haskell has dynamic subtype checking. For example, there is the subtype of nonempty lists, and the head function is only defined for this subtype. If you give it an empty list, the Haskell runtime will stop your program.
      Some type theories (like the one in Lean) let you turn subtypes into bona fide types that are statically checked, though when you have an object satisfying a subtype you have to supply a proof that you can do the "cast." Languages like Java have an extremely weak version of static subtyping in the form of interfaces.
      If I'm trying to say anything, it's that there is always some amount of dynamic subtyping in a program, no matter the type system, and it's interesting to find nice ways to express those subtypes statically. This can be difficult, though, since more elaborate subtypes can require that part of your program be a real mathematical proof. Sometimes you can get around this by having functions return some kind of Optional value, returning None for inputs that aren't part of the subtype.

    • @emiflake
      @emiflake 3 ปีที่แล้ว +5

      I think in this case nominal typing vs structural typing is also an interesting duality to consider. Set theory deals with unions, subsets, etc. And so does structural typing, you can have types unify based on their structure alone. Nominal typing works more like type theory in the sense that types never share element because every element is sort of inherently tagged with its name (hence "nominal")

    • @kmill31415
      @kmill31415 3 ปีที่แล้ว

      @@emiflake A sort of strange thing in type theory like the ones in Coq, Agda, and Lean, which all appear to have nominal typing, is that there must be types that share elements -- this is referred to as the failure of type constructors being injective. There are "too many types" for there to be enough tags to go around, so to speak. This is OK though, because statically you determine types based on how things are constructed in source code. At runtime, though, this means there is necessarily some type erasure (like in the Java generics sense).
      There's another level to this, which is that types have associated constructors that are used to create elements of that type. You could say the subtype of things created with a particular constructor is nominal because elements are essentially tagged with how they were constructed.
      An interesting way to implement structural typing is to add in a system that tries to automatically insert reasonable coercion functions when types fail to unify (this can be used in other situations, too, like when using a natural number where an integer is expected). I'm not sure if that does everything you'd want for structural typing, though.

    • @JivanPal
      @JivanPal 3 ปีที่แล้ว +1

      Some level of ambiguity also exists in "statically typed", too. One can argue that C is not statically typed, in the same way that you argue C is not strongly typed: you can subvert the type system via casting, it just has to be done explicitly, unlike in, say, PHP, where types are expressly dynamic by design.
      The ambiguity in the use of the term "strong typing", and the nature of the term "static typing", is not relevant in type theory. Such ambiguity or ability to subvert static typic only exists in real, practical programs, such as in the example you give (e.g. casting pointers and datatypes at the potentially arbitrary whims of the programmer in C). It comes from the fact that real programs deal with actual binary data, instances of types in real programs are ultimately always realised as a binary encoding of whatever abstract thing they represent, and thus one can "translate" freely between different types by re-interpreting the underlying binary encoding. To give a simple example, one can "translate" between signed integers and unsigned integers by e.g. doing
      int x = -7;
      void* p = (void*)(&x);
      unsigned int y = *(unsigned int*)p;
      printf("%d", y); // prints '4294967289', assuming `int` is 4 bytes/32 bits
      But type theory is more abstract than this. In pure type theory, there is no notion of translating/re-interpreting an instance of one type as an instance of another. This is why we have tailor-made languages and apps like Agda and Coq which are specifically designed for applications of type theory and for performing computer-assisted proofs. The likes of Agda are not only statically typed like C, but they are _completely, definitively_ statically typed, unlike C, in the sense that there is _absolutely no way_ to subvert the type system; casting between types is not a feature.

    • @SimonBuchanNz
      @SimonBuchanNz 3 ปีที่แล้ว +1

      @@JivanPal but you're just describing strong typing. Static typing means there's type checking done at compile time, dynamic typing means done at runtime (languages can also do both or neither). Strong typing means you can't do "bad things" with types, and is somewhat ambiguous across languages because different languages define "bad things" differently, and define the bar for whether the language is strong as a whole differently: does it need to be completely, provably strong in all situations? Is there an exception for "unsafe" tagged code? Writing to /proc/self/mem? The programmer doing things the language hasn't defined?

  • @ratsby
    @ratsby 3 ปีที่แล้ว +48

    Looks like Professor Altenkirch has lost a lot of weight! Good for him!

  • @Turidus
    @Turidus 3 ปีที่แล้ว +75

    Doing Math with numbers? easy. Doing math with letters? okay. Doing math with symbols? hard. Doing maths with mathematical proofs? Blowing my mind ^^*

    • @randomsoul294
      @randomsoul294 3 ปีที่แล้ว +3

      no

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +4

      Proof and models are the bread and butter of mathematics

    • @BlastinRope
      @BlastinRope 3 ปีที่แล้ว +1

      @@LKRaider and if you eat nothing but bread and butter for every meal you wouldnt be very healthy

    • @VasuJaganath
      @VasuJaganath 3 ปีที่แล้ว +7

      Proofs are nothing but programs. Theorems are nothing but types. Simplification of proofs is nothing but evaluation (running) of programs. Type Theory is the grand unified theory of computation and can be a solid basis for all of mathematics*.

  • @MrTej780
    @MrTej780 3 ปีที่แล้ว +6

    It clicked for me, thanks for the explanation

  • @davidgillies620
    @davidgillies620 3 ปีที่แล้ว +4

    More like this please. I am a software engineer, not a computer scientist, so it is nice to see some of the theoretical underpinnings (I was blown away when I discovered monads and even more blown away when I found C++17 supported them - std::optional is the Maybe monad and now I use it all the time for operations that can fail like DB lookups etc.)

    • @JivanPal
      @JivanPal 3 ปีที่แล้ว +3

      Don't get too carried away with functors and monads in such languages! In the likes of C++, you can almost always implement things more simply/cleanly by using e.g. `null` in place of `std::optional.empty` to indicate an error state, thereby removing a layer of encapsulation.

    • @jawad9757
      @jawad9757 ปีที่แล้ว +2

      @@JivanPal lol

    • @JivanPal
      @JivanPal ปีที่แล้ว

      @@jawad9757 double lol

    • @jawad9757
      @jawad9757 ปีที่แล้ว +2

      @@JivanPal by using null pointers, you get rid of all of the safety afforded by optional types

  • @pedrobernardo5887
    @pedrobernardo5887 3 ปีที่แล้ว +5

    Understood about 1% of it. Loved it!

  • @Abir_Haque
    @Abir_Haque 3 ปีที่แล้ว +7

    Great video! I also like how Thorsten used continuous form paper during his explanation.

    • @hrclful
      @hrclful 3 ปีที่แล้ว +1

      It's oe of the key artifacts / show elements of Computerphile.
      I wonder where they get those.

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +1

      @@hrclful probably by raiding the university museum archives!
      j/k

  • @cluerip
    @cluerip 3 ปีที่แล้ว +6

    A buddy of mine did a project on mathematically modelling where lost hikers would be likely to go over time. For a second I thought it was heading that direction.

    • @jezza10181
      @jezza10181 3 ปีที่แล้ว +6

      There's something similar that's used to find people lost at sea. It's based on Bayesian updating.

  • @JoJoModding
    @JoJoModding 3 ปีที่แล้ว +2

    I know a bit more about this but am still mesmerized by Hedberg's theorem. Why do identity proofs become unique when your Type is discrete?

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      A decidable proposition is the same as a Boolean and equality of Booleans is trivial. Maybe this helps?

  • @setlonnert
    @setlonnert 3 ปีที่แล้ว +10

    On a side note, Per Martin-Löf's type theory can actually be programmed. Maybe that was the goal from the 80'ties when they sought a real programmable logic (without cuts etc)? And, in a way, that would solve programming as "what" rather than "how". It would also make programs more of proofs than sequences of instructions. But for an ordinary programmer, programming in type theory is hard. Much harder than one would like it to be.

    • @davidwuhrer6704
      @davidwuhrer6704 3 ปีที่แล้ว

      It makes it more difficult to put errors in empty files because you actually have to think about your domains.
      You can't to things like 1/0*8+'Batman'.
      But it makes your code easier to read, which makes it easier to maintain.
      With functional programming, the code often looks declarative rather than procedural.
      DSLs are _supposed_ to be declarative.
      But as my example above shows, untyped functional programming has no guarantee that the code does what you expect.
      As much as Matlab scripters hate it: Strict type checking is your friend.

    • @davidwuhrer6704
      @davidwuhrer6704 3 ปีที่แล้ว +2

      @you- tube Programming is a fundamentally inhuman activity: There are no "happy accidents", you have to be diligent, consider all that can go wrong, and the feedback is mostly being shown your mistakes.
      And yet, programmers say that it is the most fun you can have with your clothes on (clothes not mandatory).
      As Shannon Garrity once observed: Programmers are not human.

  • @muhammadsiddiqui2244
    @muhammadsiddiqui2244 3 ปีที่แล้ว +16

    The only thing I learned is that Prof. Martin was a brave genius because he worked on something which I could not understand the heck about it ...
    Edit: And that something is related to types ...

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +5

      Sorry Muhammad. If you have some time you can listen to my lectures which are linked in the comments. Also I am always happy to answer questions.

    • @muhammadsiddiqui2244
      @muhammadsiddiqui2244 3 ปีที่แล้ว +5

      @@ThorstenAltenkirch Thanks a lot for reply. It was just on a lighter note. I have seen your channel. Will watch your videos.

  • @BlastinRope
    @BlastinRope 3 ปีที่แล้ว +2

    I like how he didnt forget to return control after the sad story

  • @laykefindley6604
    @laykefindley6604 3 ปีที่แล้ว +5

    I tried to follow this, but I think my expression after it is...what?
    I would love a few videos breaking this all down step by step. Fingers crossed!!

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +3

      Yes that’s the plan. There is already one video on Agda on the channel now and another one being prepared.

    • @laykefindley6604
      @laykefindley6604 3 ปีที่แล้ว

      @@ThorstenAltenkirch awesome! Glad to hear!

  • @NorthWay_no
    @NorthWay_no 3 ปีที่แล้ว +28

    Sadly this passes way above my head, and I can feel how this part of CS is Not My Kind Of Thing. Happy to see the dress code of professors to be spreading around though!

    • @hrclful
      @hrclful 3 ปีที่แล้ว +3

      "Speak softly but make a severe dent in type theory" - Theodore Roosevelt

    • @---do2qd
      @---do2qd 3 ปีที่แล้ว +4

      would you say this is not your .... type of thing?

  • @willyh.r.1216
    @willyh.r.1216 3 ปีที่แล้ว +1

    ... the type theory opens a new way of doing math. Really love it. This new math could have a cool name like: Mathoid or Algomath or Quantumath.

    • @MCLooyverse
      @MCLooyverse 2 ปีที่แล้ว +1

      Or... Type Theory.

    • @sosariau1973
      @sosariau1973 2 ปีที่แล้ว +1

      It is called univalent foundations.

  • @AnarchoAmericium
    @AnarchoAmericium 3 ปีที่แล้ว +7

    "I just wanted to understand types, now I'm learning about ∞-groupoids, (∞,1)-categories of (∞,1)-toposes, n-homotopies, n-truncation, higher Isbell duality...
    Where did my life go so wrong..?"

  • @malkuchecker
    @malkuchecker 3 ปีที่แล้ว +2

    My favourite! nice explanation, very Interesting Topic
    also
    9:00 computer lagging a little

  • @mag2XYZ
    @mag2XYZ 3 ปีที่แล้ว +4

    Great video, but I couldn't really grasp the importance/impact of the solution to this problem. Like, what are consequences of this?

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +2

      The Univalence principle, in combination with this work by Martin, can be used to rebuild the whole foundation of mathematics!

  • @sonicmaths8285
    @sonicmaths8285 5 หลายเดือนก่อน +1

    Awesome!

  • @paullamar4111
    @paullamar4111 3 ปีที่แล้ว +3

    Loved this! More Type Theory please!

  • @lucasa8710
    @lucasa8710 8 วันที่ผ่านมา

    at the same time that I understand why some one says "well, I'm not going into the details of ..." I also get frustrated because that was the reason you got my attention in the first place, I want to know the details of such thing

  • @kap1840
    @kap1840 3 ปีที่แล้ว +7

    I wish there were subs

  • @MatthewHaydenRE
    @MatthewHaydenRE 3 ปีที่แล้ว

    Loving the inside out shirt.

  • @TheRefinedGentleman
    @TheRefinedGentleman 3 ปีที่แล้ว

    This solution is beautiful, I love it!

  • @martijn3151
    @martijn3151 3 ปีที่แล้ว +12

    Pro tip for the cameraman: if someone is right handed, film from the left side.

    • @namelastname4077
      @namelastname4077 3 ปีที่แล้ว

      if there is a chair on the left side, AND...

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +1

      Or use a mirror!

  • @totalolage
    @totalolage 3 ปีที่แล้ว +1

    I have no idea what I'm watching but I love it. If I get the chance to take type theory I'll make sure to get some basics then come back to this.

    • @TremereTT
      @TremereTT 3 ปีที่แล้ว

      I did Kerninformatik (core informatics) for 4 Semesters....also had no idea....
      Learned it all later in my second try ! turns out there is nothing to calculate, it's all about defining things or recognizing how things fit into defnitions....

  • @TMJ937
    @TMJ937 3 ปีที่แล้ว +1

    RIP Martin. Great tribute to him, and video guys.

  • @aDifferentJT
    @aDifferentJT 3 ปีที่แล้ว +13

    Interestingly in Idris you can prove uniqueness of equality proofs.

    • @NNOTM
      @NNOTM 3 ปีที่แล้ว +8

      In Agda, you can prove it by default, too, because it has the K axiom (vaguely similar to J from the video, but lets you prove UIP). But you can add the flag --without-K, and then you can't prove UIP anymore.

    • @chriswarburton4296
      @chriswarburton4296 3 ปีที่แล้ว +12

      Many systems can have UIP as an axiom (or something equivalent, like K). That was quite popular, since it made some proofs easier (hence why Agda has this, and apparently Idris too). There was no reason *not* to have UIP; until univalence came along, which is incompatible with UIP. That's when people started using the '--without-K' option in Agda :)

    • @okuno54
      @okuno54 3 ปีที่แล้ว +6

      I wonder if that design choice comes down to the difficulty of efficiently implementing higher inductive types. Most well-known types in programming are plain inductive types which are easy to implement (little more than a discriminated union), and uip does hold for these kinds of types.

    • @davidwuhrer6704
      @davidwuhrer6704 3 ปีที่แล้ว

      Doesn't UIP contradict Rice's lemma?

  • @FriendzoneLP
    @FriendzoneLP 3 ปีที่แล้ว +2

    ''You see I Start with zero, because I'm a computer scientist'' xD

  • @anthonyhart7878
    @anthonyhart7878 3 ปีที่แล้ว +2

    So, your type theory doesn't have inheritance? It was stated that once an entity was typed that it wouldn't be of another type... In C#, my string is still an "Object" type...

    • @Bolpat
      @Bolpat 3 ปีที่แล้ว +1

      No, Martin-Löf type theory doesn't have inheritance. Technically speaking, the type of prime natural numbers is not a sub-type of the natural numbers. The prime numbers type is modelled as a so-called Sigma type, also called a dependent pair type, that is a type containing pairs, where the type of the second entry may depend on the value of the first one. In the case of prime numbers, the first entry is the natural number to be a prime. The second entry is a proof (as explained in the video, that is a program) that in one way or another proves that the number is in fact prime.
      If the number is not a prime, no such proof can exist, and therefore, there is no pair containing it.
      One can prove that all possible proofs of prime-ness _of the same number(!)_ are equal. So the second entry of a such a pair provides no information beyond its existence. And that is what justifies talking about primes being a sub-type of the naturals in some textbooks.
      So, technically, there are no sub-types, but practically, there are.
      Another kind of de-facto sub-types is inclusion functions. If there's an injection function _inc_ that maps Nat to Int preserving everything interesting like operations and such, formally correct, it would be a monomorphism, we can look at Nat as if it were a sub-type of Int. Even programming languages are often smart enough to figure out where to insert the injection function: if z : Int and n : Nat, then z-n actually is z-inc(n) as minus is only available for Int.
      Then there's the type _Type,_ the Universe that “contains” the types. It is itself a type and it's objects are, well, types. So 1 : Nat, and Nat : Type. But Type cannot be of type Type, that would lead to inconsistencies. So instead of having one Universe, type theory requires an infinite hierarchy of Types, usually labelled Type0, Type1 and so on, where Nat : Type0 and Type0 : Type1 and Type1 : Type2 and so on. As far as I know - and please do _not_ take my word alone for it, those Universes are cumulative, so Nat : Type1, too. So smaller Universes are truly sub-types of larger Universes.
      Inheritance as in C# and Java isn't something commonly found in dependent type theories. That's a very different branch of type theory. Unfortunately, they're named similarly, but don't have too much in common.

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว

      I think sun typing is a notational convention. There is an embedding for example from natural numbers to integers and whenever you need an integer but only have a natural number you insert it automatically. However organising these embedding a effectively is certainly a non-trivial task. However it shouldn’t be at the core of a type system but in a component we call elaboration.

    • @Bolpat
      @Bolpat 3 ปีที่แล้ว

      @@ThorstenAltenkirch Yes. There's also an embedding from the primes as defined in my comment above to the naturals: just take the first entry of the pair.

  • @droppedpasta
    @droppedpasta 3 ปีที่แล้ว

    Any time I’m starting to feel smart, I watch something like this. Problem solved.

  • @pmcgee003
    @pmcgee003 3 ปีที่แล้ว +2

    "Thorsten's just this guy, you know".

  • @fattimiv
    @fattimiv 3 ปีที่แล้ว +1

    I really struggled to get what this was about. I feel like maybe too much was lost in "not trying to give too much detail about [XYZ]..." Maybe I have just missed some videos that would give background info but this one really lost me.

  • @dralfonzo24
    @dralfonzo24 3 ปีที่แล้ว +4

    Getting huge Godel's Incompleteness Theorem vibes halfway through this video. Are the concepts connected?

    • @datenraffzahn6094
      @datenraffzahn6094 3 ปีที่แล้ว

      When he said there are multiple ways representations of equality within types, I also thought of that as well as Turing's theorem about computation. Basically there are multiple ways computer programs can be represented while producing the same output, under what aspects are such two program considered 'equal' or 'identical'? All these theorems Goedel and Turing are at least related to or affecting each other. On a wider scale you can apply this to scientific theories as well. Consider two scientists coming up with an equal theory, but either use a completely different language or vocabulary to represent the same thought, even use different ways or methods of proof. Who gets credited for the discovery? Its always mind blowing how much uncertainty arises when asking questions about 'equality' or 'identity'...

  • @AtriumComplex
    @AtriumComplex 3 ปีที่แล้ว +20

    Does anyone have a MOOC or textbook they would recommend to learn more type theory?

    • @Computerphile
      @Computerphile  3 ปีที่แล้ว +17

      There's a link in the description

    • @empathogen75
      @empathogen75 3 ปีที่แล้ว +3

      IMO the best way to learn it is to learn a language like Haskell that leans on types heavily.

    • @chriswarburton4296
      @chriswarburton4296 3 ปีที่แล้ว +14

      @@empathogen75 Dependent types are key to type theory, which Haskell doesn't have; or, more precisely, Haskell built up a very complicated non-dependent type system, then recently started to add dependent types, resulting in a big confusing tangle of features. Dependent types are actually much simpler than Haskell (e.g. there's no distinction between terms and types!). Hence I'd recommend Agda or Idris for this sort of thing, rather than Haskell.

    • @dialecticalmonist3405
      @dialecticalmonist3405 3 ปีที่แล้ว

      J programming language.

    • @nournote
      @nournote 3 ปีที่แล้ว +1

      (How) are category theory and type related?

  • @pierreabbat6157
    @pierreabbat6157 3 ปีที่แล้ว +4

    How do you write the programs? What do they look like?

    • @zilvarro5766
      @zilvarro5766 3 ปีที่แล้ว +2

      Yeah. I was screaming that question to my screen during the video 😂
      In particular: What does it mean for a program to prove something. Or programs to be considered "equal".

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +5

      Check out Agda which is also used in the Type Theory lectures which are linked in the description.

    • @Bratjuuc
      @Bratjuuc 3 ปีที่แล้ว +1

      Also Idris language

  • @tera.
    @tera. 3 ปีที่แล้ว +5

    Would love if video had captions 🙁 It's too hard for me to understand what's being said at times

  • @barrotem5627
    @barrotem5627 3 ปีที่แล้ว

    Please add captions !

  • @_K_y
    @_K_y 3 ปีที่แล้ว +1

    RIP Martin Hofmann

  • @jpjude68
    @jpjude68 3 ปีที่แล้ว +2

    it would be so much easier if functions/statements could be executed backwards to be absolutely sure that there's a 1 to 1 correspondence between types. It seems like there's a chance that if 2 different functions are used, it may result in a completely different type. If functions/statements use multiple arguments, it's then impossible to have the original arguments when run forwards then backwards, we may only obtain a range of valid arguments in which the original arguments can be found...

    • @chriswarburton4296
      @chriswarburton4296 3 ปีที่แล้ว +7

      Prolog can run functions backwards (more precisely, it defines relations rather than functions, and uses search to find values related to the ones we give, whether that's an "input" or an "output"). For multi-argument functions, currying can be useful. There are also languages like Racket, which allow multiple return values; that might be useful :)

    • @jpjude68
      @jpjude68 3 ปีที่แล้ว

      @@chriswarburton4296 hmm neato!

    • @SimonBuchanNz
      @SimonBuchanNz 3 ปีที่แล้ว +1

      Not much to do with multiple arguments, they're just a single tuple argument. The real problem is you need to handle expressions that aren't injective, for example x / 4 where x is an integer will result in the same value for 4 different possible values for x. And that's an easy one.

    • @chriswarburton4296
      @chriswarburton4296 3 ปีที่แล้ว +1

      @@SimonBuchanNz Yep. Prolog (and related systems, like Kanren) handle this by returning multiple values (or a set/stream of values, if you prefer). I know Prolog's resolution algorithm relies on first-order logic, and wouldn't work in a higher-order logic like type theory. For example, in type theory we cannot ask 'does value V have type T?' (unlike set theory, where 'is element of' is a predicate which can be true or false). Instead, we would have to make an encoding of type theory, perform our search using that encoded form, then 'decode' the result back to a normal type theory value. This latter 'decoding' step is a challenge, since it would either introduce inconsistency, or incompleteness. Fascinating idea though!

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว +1

      @@chriswarburton4296 do you have more details of that encoding/decoding of type theory?

  • @NoHandleToSpeakOf
    @NoHandleToSpeakOf 3 ปีที่แล้ว +1

    Are you saying that we should only compare apples to apples and there are more than one apple around?

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว

      🍎 != 🍊

  • @dognip
    @dognip 3 ปีที่แล้ว +1

    If only this video had captions...

  • @madvorakCZ
    @madvorakCZ 3 ปีที่แล้ว +1

    I am always confused when somebody elaborates on whether one proof is equal to another proof.

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      Since proofs are programs it reduces to the question wether two programs are equal.

  • @danieljensen2626
    @danieljensen2626 3 ปีที่แล้ว +5

    I know what most of these words mean on their own...

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว

      p, q, a, b ... erm yes, I heard of those...

  • @SimGunther
    @SimGunther 3 ปีที่แล้ว +13

    The hardest problem: time travel in type theory

    • @AnarchoAmericium
      @AnarchoAmericium 3 ปีที่แล้ว

      Nah. That's just a continuation type.

  • @gidi1899
    @gidi1899 3 ปีที่แล้ว

    Doesn't it means we should try to define:
    Relative Equality of types
    Maybe we need a set of relative equalities, containing the 1 to 1 projection as the tool for a specific relative equality.
    I guess we move from discussion of the equality property of the set, to the projection quality of the set.

  • @Xayuap
    @Xayuap 3 ปีที่แล้ว

    o'course they are the same as they are infinitely countable, and they are also the same as Rationals

  • @CircuitrinosOfficial
    @CircuitrinosOfficial 3 ปีที่แล้ว +1

    What does it mean for two proofs to be equal?

  • @erwinmulder1338
    @erwinmulder1338 3 ปีที่แล้ว +1

    Wait, so does this mean that ANY type that has the same finite number of elements or has a 'countably infinite' number of elements is the same type?

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +4

      Yes, indeed. Because you cannot observe so much from a mere type. If you add more structure then you can distinguish more. E.g. not all groups with a fixed number of element are the same.

    • @LKRaider
      @LKRaider 3 ปีที่แล้ว

      @@ThorstenAltenkirch does it mean only bijective groups are provably equal then?

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      @@LKRaider no why? I mean ok a commutative group will not be equal to a non-commutative group but certainly two non-commutative groups can be isomorphic and hence equal.

  • @bulbuwu7749
    @bulbuwu7749 3 ปีที่แล้ว

    Thanks awesome video

  • @morkovija
    @morkovija 3 ปีที่แล้ว

    Wish I understood this better

  • @fabianforslund4622
    @fabianforslund4622 3 ปีที่แล้ว +4

    hello torsten, I think you did a good job at introducing type theory and presenting that problem. Martin Hofmann 1965 - 2018.
    /cse-student, gothenburg

  • @madvorakCZ
    @madvorakCZ 3 ปีที่แล้ว

    R. I. P. Martin Hofmann

  • @peterhudecdotcom
    @peterhudecdotcom 3 ปีที่แล้ว +2

    If only the camera was to the left of professor so he wouldn't obstruct what he was writing with his hand.

  • @MCRuCr
    @MCRuCr 2 ปีที่แล้ว

    what does it imply to proof statements about proofs themselves?

  • @willd4686
    @willd4686 10 หลายเดือนก่อน

    What does it mean for to proofs to be equal? Only that they prove the same thing?

  • @adamkimberley2575
    @adamkimberley2575 3 ปีที่แล้ว

    RIP Martin Hoffman.

  • @Detsiwt6161
    @Detsiwt6161 3 ปีที่แล้ว +5

    I really tried but there are a number of places where I just cannot parse the sounds I'm hearing into sensible sentences. Can't tell if it's the topic that's confusing or just missing information cause I'm bad at parsing unclear vocalizations (though likely some of both). But please make correct subtitles if you can. :)

    • @softwarelivre2389
      @softwarelivre2389 2 ปีที่แล้ว

      Yeah, subtitles would be of help, even more so for non-native english speakers.

  • @henrikoldcorn
    @henrikoldcorn 3 ปีที่แล้ว

    Hmm. I approximately followed until the ending - it’s not clear to me what the significance of this result is.

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      Equality should identify objects that behave the same way. You need groupoids to handle this sort of equality for types.

  • @marklonergan3898
    @marklonergan3898 3 ปีที่แล้ว +1

    RIP.

  • @ttt69420
    @ttt69420 3 ปีที่แล้ว +1

    this is a level of abstraction that I'm not comfortable with

  • @hansisbrucker813
    @hansisbrucker813 3 ปีที่แล้ว +1

    How does this relate to category theory? 🤔

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      Category and Type Theory work very well together. Groupoids are categories where every morphism is an isomorphism. However to model types properly you need higher categories: types are weak infinity-1 groupoids.

    • @hansisbrucker813
      @hansisbrucker813 3 ปีที่แล้ว

      @@ThorstenAltenkirch thanks 😊

  • @allp84
    @allp84 3 ปีที่แล้ว +1

    So im just seeing this video 2 weeks after it launched. Of the 2 mio suns, you haven't even gotten 70k views. I was aware that TH-cam was suppressing independent news but is this now also affecting informational videos?

  • @feandil666
    @feandil666 3 ปีที่แล้ว

    I have trouble following the video after an intro like that.... yeah, some people are just too brave

  • @luiul5917
    @luiul5917 3 ปีที่แล้ว +5

    Is the shirt inside out?

    • @hrclful
      @hrclful 3 ปีที่แล้ว +1

      No

  • @MCLooyverse
    @MCLooyverse 2 ปีที่แล้ว

    But... those are different kinds of equality? You cannot prove ℕ = ℤ, because they are different (irreducible) symbols. You cannot find an a such that refl a : ℕ = ℤ. Now, bijection is a totally valid and useful notion of equality, but it is not the same as the basic refl-only kind.
    That said, I'm sure I'm misunderstanding something. I've been dabbling in Type Theory for maybe a year; he has been actively involved in research for much longer.

    • @tonaxysam
      @tonaxysam 8 หลายเดือนก่อน

      The thing is that, the equality mentioned here is named "propositional equality", which is like "equal for what we care about". If You Say "two things are equal if there is a bijection between them" then sure enough, there is a proof that N and Z are equal. But they are NOT equal if You take bijections that respect adition for example. The set of real numbers and the Interval (0, 1) are equal in terms of topological properties. But they are NOT equal as metric spaces. One is bounded and the other isn't

  • @roman9509
    @roman9509 3 ปีที่แล้ว +11

    what is he talking about

    • @drdca8263
      @drdca8263 3 ปีที่แล้ว +1

      Type theory

  • @johnqpublic2718
    @johnqpublic2718 3 ปีที่แล้ว +4

    The Hardest Button to Button: uh oh!

  • @bigJovialJon
    @bigJovialJon 3 ปีที่แล้ว

    The Caps Lock.

  • @koysdo
    @koysdo 2 ปีที่แล้ว

    is it just me smelling the black marker?

  • @ZGGuesswho
    @ZGGuesswho 3 ปีที่แล้ว +1

    they had us in the first half ain't gonna lie

  • @KingPauke
    @KingPauke 3 ปีที่แล้ว

    his shirt though

  • @jacopo4395
    @jacopo4395 3 ปีที่แล้ว +1

    SUBTITLES

  • @filiperocha1465
    @filiperocha1465 2 ปีที่แล้ว +1

    So 3 is of type natural and not of integer type? Since it cannot have more than one type...

  • @markuspfeifer8473
    @markuspfeifer8473 2 ปีที่แล้ว

    Isn’t that basically a typed version of rice-Shapiro?

  • @dmytro_shum
    @dmytro_shum 3 ปีที่แล้ว

    everything seems to be clear, but in fact I did not understand anything (the deep meaning of this whole video), especially what is the practical application of this all, even if it was possible to prove it
    P.S. Maybe we just need a lot of good examples?

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +2

      Indeed, sorry for not saying more due to lack of time. We like to identify objects which behave the same even though they are defied differently. This is important both in Mathematics and in Computer Science. The equality in the groupoid model gives you this.

    • @dmytro_shum
      @dmytro_shum 3 ปีที่แล้ว +1

      @@ThorstenAltenkirch thank you for your specifying. The sense of the video now became more clear

  • @PaulPassarelli
    @PaulPassarelli 3 ปีที่แล้ว +1

    Oh well, there went 23 minutes I'll never get back.

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +1

      I am impressed that you stuck around for 23 minutes in this case. :-P

    • @PaulPassarelli
      @PaulPassarelli 3 ปีที่แล้ว +1

      @@ThorstenAltenkirch Well, I watch everything at 150% speed, so I did save a little time. I was mildly amused when you included "0" into the set of Natural numbers, because you're 'a computer guy'.
      However, that's where it began going off the rails for me. I can't tell if type theory is a subset or superset or disjoint set of set theory. And from what I heard, I don't think type theory can make that determination either. Call me simple, but when a theory starts breaking axiomatic rules like equivalence, people like me tend to associate it with navel gazing.
      P.S. Sorry for your loss.

    • @ThorstenAltenkirch
      @ThorstenAltenkirch 3 ปีที่แล้ว +3

      @@PaulPassarelli Type Theory is among other things an alternative to set theory. I am not sure what you mean by "breaking axiomatic rules like equivalence". Sure equality is an equivalence relation in type theory and I did mention reflexivity, transitivity and symmetry.

  • @Bit-while_going
    @Bit-while_going 3 ปีที่แล้ว

    Type is something more or less easy to nail down in human language because you basically just omit a term. So rather than a man running, you just have the man or the running and their different types not needing a second term as describing the kind of something would. So like a 'running man' could be a kind of man.
    Most of the time people speak as if the second term was just being swapped between adjective and verb though.
    Maybe that's analogous to the computer programming problem? Maybe it would be more useful to just define it for the computer based on whether there's a second term rather than what that term happens to be? Like just have it look at the page and examine it's program you know?

  • @AntiWanted
    @AntiWanted 3 ปีที่แล้ว

    NIce

  • @WillEhrendreich
    @WillEhrendreich 3 ปีที่แล้ว

    I know some of these words..

  • @a51mj12
    @a51mj12 3 ปีที่แล้ว

    IM STRAIGHT SLEEPINK!!! 35yr young here.

  • @nosuchthing8
    @nosuchthing8 3 ปีที่แล้ว

    What is type theory

    • @Ryan_Hokanson
      @Ryan_Hokanson 3 ปีที่แล้ว +1

      @@roman-fo2sk Which is a type of theory.

    • @drdca8263
      @drdca8263 3 ปีที่แล้ว +1

      Are you familiar with the types in programming languages? It is like that, except as an alternative foundation (or, family of foundations) of math.
      You talk about types, and terms that belong to types, and how, given some terms of some types, how you can construct some other terms of other types (or of the same types), and things like that.