Euclidean Manhattan and Cosine Distance | Euclidean distance vs Cosine similarity

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2025

ความคิดเห็น • 43

  • @yogalakshmiramesh8895
    @yogalakshmiramesh8895 11 หลายเดือนก่อน

    Lovely explanation. Awesome!!!! thanks a lot

  • @IRFANSAMS
    @IRFANSAMS 2 ปีที่แล้ว +1

    Your videos are super awesome for some one who is doing self study on ML

    • @UnfoldDataScience
      @UnfoldDataScience  2 ปีที่แล้ว +1

      Thanks alot, please share with others too.

  • @sandeepchandra5033
    @sandeepchandra5033 ปีที่แล้ว +1

    Very good Explanation sir.
    We need more videos like this...!!!.
    Thanks for your efforts & sharing knowledge 🙏
    Note:- could you please explain if we 2 data sets csv files like train csv file 1459 rows and 81 columns and 1460 rows 80 columns after merged model implementation. supervised techniques and finally want ID column and salaried to csv how do work could please explain sir

  • @shubhamchoudhary5461
    @shubhamchoudhary5461 3 ปีที่แล้ว +1

    Very good Explanation sir.
    We need more videos like this...!!!.
    Thanks for your efforts & sharing knowledge 🙏

  • @soheilaahmadi4807
    @soheilaahmadi4807 2 ปีที่แล้ว

    amazing like always. Thank you so much

  • @pramodyadav4422
    @pramodyadav4422 3 ปีที่แล้ว +1

    Every video is clearing the doubt.

    • @UnfoldDataScience
      @UnfoldDataScience  3 ปีที่แล้ว

      Thanks again Pramod. Your comments mean a lot.

    • @pramodyadav4422
      @pramodyadav4422 3 ปีที่แล้ว

      @@UnfoldDataScience do you have any plan to teach online someone ? Like mini batch type ??

  • @anilshinde8025
    @anilshinde8025 2 ปีที่แล้ว

    Great. Nice explaination

  • @suleymanerim2119
    @suleymanerim2119 2 ปีที่แล้ว

    Thanks, good clarificiation

  • @swethanandyala
    @swethanandyala 2 ปีที่แล้ว

    if it is Amans video first like and then watch!!!.... thank you for sharing your knowledge

  • @santoshr1708
    @santoshr1708 2 ปีที่แล้ว +1

    Thank you sir. This was really helpful. I have a request. Please a detailed video on Iris dataset using k - means clustering. It will help me as well as everyone a lot. I didn't find any good video on Iris dataset. So, it would be great if you make one on this.

    • @UnfoldDataScience
      @UnfoldDataScience  2 ปีที่แล้ว

      K means videos are already there, please see this complete playlist
      th-cam.com/video/LCpihhKcJQs/w-d-xo.html

    • @santoshr1708
      @santoshr1708 2 ปีที่แล้ว

      @@UnfoldDataScience Watched the video but I was saying to make a project video on iris dataset.

  • @yaseraziz7275
    @yaseraziz7275 8 วันที่ผ่านมา

    MR.Aman
    can we implimen hamming distance as this
    string1 = "pythonwwww"
    string2 = "pytho"
    cout = 0
    if len(string1) != len(string2):
    diff = abs(len(string1) - len(string2))
    if len(string1) > len(string2):
    string2 += diff * ' '
    for i in range(len(string1)):
    if string1[i] != string2[i]:
    cout += 1
    cout
    to deal with not equl strings ???

  • @dhlpaket2247
    @dhlpaket2247 3 ปีที่แล้ว +1

    You are amazing
    Thank you

  • @RamanKumar-ss2ro
    @RamanKumar-ss2ro 3 ปีที่แล้ว +1

    Thanks for the video.

  • @RanjitSingh-rq1qx
    @RanjitSingh-rq1qx 2 ปีที่แล้ว

    Sir, you are to good. I had many doubts in my mind before watching this video. But now not anyone ☺️. And one more thing sir please arrange the white board little bigger 😊🥰😍

    • @UnfoldDataScience
      @UnfoldDataScience  2 ปีที่แล้ว

      Thanks Ranjit . Yes new digital board is in use now

  • @61_shivangbhardwaj46
    @61_shivangbhardwaj46 3 ปีที่แล้ว

    Sir you r best
    How easy explanation it is!
    Thnx sir😊

  • @ANSHULJAINist
    @ANSHULJAINist 3 ปีที่แล้ว

    Amazing explanation.

  • @prabhakarm5819
    @prabhakarm5819 3 ปีที่แล้ว

    simply & easy way understading all your concepts.Can you createNLP playlist also. So useful.Your way of teaching i feel so light. Super.

    • @UnfoldDataScience
      @UnfoldDataScience  3 ปีที่แล้ว

      Thanks a lot Prabhakar. Please find NLP playlist here:
      th-cam.com/video/cs049uQWbpg/w-d-xo.html

  • @sandipansarkar9211
    @sandipansarkar9211 3 ปีที่แล้ว

    finished watching

  • @rishigupta2342
    @rishigupta2342 2 ปีที่แล้ว

    Good explanation!!!

  • @radhakrishnanananthan1585
    @radhakrishnanananthan1585 3 ปีที่แล้ว

    Nice Video Aman Sir. Can you please share videos on SVD and PCA.

  • @balapranav5364
    @balapranav5364 3 ปีที่แล้ว +1

    Grower distance please

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 3 ปีที่แล้ว +1

    Requesting you to kindly show the same using Python code.

  • @nikhilgupta4859
    @nikhilgupta4859 3 ปีที่แล้ว

    Not impressed sir with this video, this video is nothing more than hundreds of videos available online.
    We see your videos for something extra.
    People are searching for the case where we decide which distance should be used based on data.

    • @UnfoldDataScience
      @UnfoldDataScience  3 ปีที่แล้ว

      Thanks Nikhil for the feedback. I will take care of it. Stay safe. tc

  • @sandipansarkar9211
    @sandipansarkar9211 3 ปีที่แล้ว +1

    finished watching