Another World Similar to Calculus | Discrete Calculus

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ม.ค. 2025

ความคิดเห็น • 157

  • @SunnySunflowerSeed
    @SunnySunflowerSeed หลายเดือนก่อน +400

    Δ,d and ∂ would make good characters in a saturday morning cartoon.

    • @JR13751
      @JR13751 หลายเดือนก่อน +27

      D and δ also

    • @TheOneWhoHasABadName
      @TheOneWhoHasABadName หลายเดือนก่อน +16

      when animation vs math (alan becker) goes into calculus, maybe the gang can educate the orange stick figure
      (and the integral symbol looms around)

    • @SunnySunflowerSeed
      @SunnySunflowerSeed หลายเดือนก่อน +6

      ​@@JR13751Wow,there are lots of D's in math

    • @trwn87
      @trwn87 หลายเดือนก่อน +1

      Math cartoons are a good idea anyway!

    • @ClementinesmWTF
      @ClementinesmWTF หลายเดือนก่อน +5

      Make sure to also throw in some ∇, as well as Δ’s doppelgänger Δ, the primes (‘, ‘’, ‘’’,…), their shorthand superscripts, the dots, and the subscripts.

  • @blarblablarblar
    @blarblablarblar หลายเดือนก่อน +141

    "No, I'm just reading it out loud" I'm dying

  • @freuner-merris
    @freuner-merris หลายเดือนก่อน +238

    Supposed to be studying for a test that's got nothing to do with discrete calculus at the moment, but a new Zundamon's Theorem takes precedence.

    • @GrifGrey
      @GrifGrey หลายเดือนก่อน +1

      same here

    • @quertyVAT
      @quertyVAT 18 วันที่ผ่านมา

      what did you score

    • @freuner-merris
      @freuner-merris 18 วันที่ผ่านมา +3

      @@quertyVAT 29/40, which is much better than I thought I'd score.
      Because correlation *does* mean causation, I can only assume my success was can be attributed to Zundamon. Thank you Zundamon.

  • @Risu0chan
    @Risu0chan หลายเดือนก่อน +62

    9:42 It's deeper than that. If you define the exponential as e^x = Σ x^k / k! and replace the regular power by the falling power, you get exactly 2^x.

    • @Happy_Abe
      @Happy_Abe 2 วันที่ผ่านมา

      Is there an argument explaining why they are equal?
      We don’t know that having the property where your forward difference returns the original function is a unique property. I see that numerically for small examples they’re the same but curious what the proof would be.

    • @Risu0chan
      @Risu0chan 2 วันที่ผ่านมา

      @@Happy_Abe There is. Since you replace the power x^k by the decreasing product x(x-1)(..)(x-k+1),
      you recognise x(x-1)(..)/k! as the (generalized) binomial coefficient C(k in x), and the sum for all k is a well known result = 2^x, that can be proved by writing a binomial series (1+z)^x = Σ C(x k) z^k, with z = 1.

    • @Happy_Abe
      @Happy_Abe 2 วันที่ผ่านมา

      @@Risu0chan wow that’s great thanks a lot makes a lot of sense. Awesome result!

  • @Yubin_Lee_Doramelin
    @Yubin_Lee_Doramelin หลายเดือนก่อน +84

    6:07 The "formal name" of this is the "falling factorial". Also, reversely, there is a "rising factorial", which is used to define hypergeometric functions.

    • @Unofficial2048tiles
      @Unofficial2048tiles หลายเดือนก่อน +1

      I was gonna comment that

    • @catmacopter8545
      @catmacopter8545 หลายเดือนก่อน +3

      it's also very related to the Pocchammer symbol or however it's spelled

    • @Yubin_Lee_Doramelin
      @Yubin_Lee_Doramelin หลายเดือนก่อน +3

      @@catmacopter8545 Pochhammer symbol. Personally, this symbol makes me quite a bit confused, so I would rather use Donald Knuth's notation (introduced in this video) which is more intuitive to me.

  • @plynkz
    @plynkz หลายเดือนก่อน +43

    now we are learning backwards

    • @destroyergod_9205
      @destroyergod_9205 หลายเดือนก่อน +3

      We're literally forgetting

    • @simdimdim
      @simdimdim หลายเดือนก่อน +8

      well, if forwards thinking doesn't work, gotta try backwards, right? :D

    • @w花b
      @w花b 25 วันที่ผ่านมา

      ​@@simdimdim Go back to monke

  • @WeeWowワウ
    @WeeWowワウ 24 วันที่ผ่านมา +4

    I love this and the jp channel so much like i actually cried because of how cute it is

  • @z0ru4_
    @z0ru4_ หลายเดือนก่อน +35

    3:11 LITERALLY ("literally" not being sementically bleached, I love it.)

    • @Sir_Isaac_Newton_
      @Sir_Isaac_Newton_ หลายเดือนก่อน +7

      "SEMENtically"
      Lmaoooooo😂😂😂😂

    • @z0ru4_
      @z0ru4_ หลายเดือนก่อน +2

      @@Sir_Isaac_Newton_ haha you sure are a Fungi

  • @srnao-wilsom7724
    @srnao-wilsom7724 หลายเดือนก่อน +56

    10:38 "could it be?" SOOOOO CUTE

  • @arccanyne9097
    @arccanyne9097 หลายเดือนก่อน +14

    I love when TH-cam realizes I love both maths and anime girls.
    This is an amazing channel dude, I can’t wait to see more of it. This will be helpful to teach my friends some calculus when they eventually struggle with it lol

  • @floofynooplz4268
    @floofynooplz4268 หลายเดือนก่อน +22

    thank you as always zundamon’s theorem en for the absolute cinema

  • @rogierownage
    @rogierownage หลายเดือนก่อน +11

    I like the silly parts of dialogue in this, it makes them feel more like people

  • @VitoriaUniversal
    @VitoriaUniversal หลายเดือนก่อน +17

    This channel has a huge potential to grow!
    I love refreshing my understanding of calculus and learning new things, thanks for this experience.

  • @blanky6739
    @blanky6739 หลายเดือนก่อน +48

    oh of course, as integration is a continuous sum, the sum is the discretization of the integral

    • @JactheConsumer
      @JactheConsumer 28 วันที่ผ่านมา

      Thank you. This opened my mind to a realization never before considered

    • @w花b
      @w花b 25 วันที่ผ่านมา

      ​@@JactheConsumergood for you

  • @Ariverfish
    @Ariverfish 28 วันที่ผ่านมา +8

    I love you Zundamon's Theorem.

  • @andersonm.5157
    @andersonm.5157 หลายเดือนก่อน +15

    "If you already know the definition of differentiation, please skip to 1:16" Who are you talking to, Metan? 😆

    • @Yubin_Lee_Doramelin
      @Yubin_Lee_Doramelin หลายเดือนก่อน +2

      She broke the fourth wall, I believe!

  • @pizza8725
    @pizza8725 หลายเดือนก่อน +14

    And the fact that the diference of polynomials is so much thougher than their diferentiation is a reason why it's so much thougher

  • @Happy_Abe
    @Happy_Abe 2 วันที่ผ่านมา +1

    It almost seems like this should be taught before calculus and then you move to limits in calculus and see the beautiful applications of jumping to the continuous world

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +63

    6:08 me whenever I try to flex in front of my friends:

    • @Johnny-tw5pr
      @Johnny-tw5pr หลายเดือนก่อน +4

      Weak lmao

    • @cdkw2
      @cdkw2 หลายเดือนก่อน +8

      @@Johnny-tw5pr cant argue lol

  • @erikabutler6893
    @erikabutler6893 7 วันที่ผ่านมา +1

    Me, way back when I was playing Earthbound, and I noticed the EXP required to reach the next level was interesting. I had taken calculus, and used differences and was somehow able to reason through it to find the polynomial for the level/EXP required to reach the next level correspondences for up to Level 18 or so, when the polynomial changed. It was a cubic polynomial. My math teacher told me this was finite differences. Since then, I’ve found the subject fascinating.

  • @Earth_Rim_Roamer
    @Earth_Rim_Roamer หลายเดือนก่อน +6

    This is such an amazing format to teach math in. Thank you for sharing.

  • @preston7371
    @preston7371 หลายเดือนก่อน +6

    Thank you Zundamon and Metan. I like your videos very much. I don't understand all of them, but I hope that one day I will understand and enjoy them to the fullest.

  • @Hollowdae
    @Hollowdae หลายเดือนก่อน +3

    I love zundamon's videos a lot

  • @smelly_sox3670
    @smelly_sox3670 หลายเดือนก่อน +3

    Ooh, the summation corresponding to integration is very interesting. Thank y'all for another banger video.

  • @GIFPES
    @GIFPES หลายเดือนก่อน +7

    This video explained derivative much much way better than my college teacher! Outstanding!!!!

  • @PedroBernardo-j5v
    @PedroBernardo-j5v หลายเดือนก่อน +6

    Bro, your videos are really good, i dindt even knew about the existence of discrete differentiation, as a calculus student i appreciate your work👍👍👍

  • @SidGame-g8n
    @SidGame-g8n หลายเดือนก่อน +46

    Zundamon , can you do a video on partial differentitation?

  • @Cringemoment4045
    @Cringemoment4045 หลายเดือนก่อน +4

    I love these videos, they give me good perspectives into maths as a whole.

  • @NihalPushkar
    @NihalPushkar หลายเดือนก่อน +3

    7:16 you explained the gamma functions so easily, nice.

  • @Saga-j9f
    @Saga-j9f หลายเดือนก่อน +3

    The peak is back

  • @tocatikina9999
    @tocatikina9999 18 วันที่ผ่านมา +1

    Beautiful Beautiful Beautiful. one day this channel will reach millions this is great content. Thanks alot❤❤❤

  • @MsGinko
    @MsGinko หลายเดือนก่อน +2

    I'm watching the World Chess Championship 2024, but a new Zundamon's Theorem video takes priority.

  • @simdimdim
    @simdimdim หลายเดือนก่อน +3

    Maths, a world of limitless possibilities, (until you hear about Gödel and his work)

  • @samazam4221
    @samazam4221 29 วันที่ผ่านมา +2

    "EN Zundamon isnt real, it cant hurt you."
    EN Zundamon:

  • @zzasdfwas
    @zzasdfwas หลายเดือนก่อน +3

    considering that "e" has to do with continuous compounding interest at 100%, the connection to "2" is obvious, since 2^x is just 100% compounding interest at compounding time of 1.

  • @sfglim5341
    @sfglim5341 หลายเดือนก่อน +6

    great video as always ! I wanna be a math youtuber like u 2 one day

  • @goombaplaylists132
    @goombaplaylists132 หลายเดือนก่อน +2

    funky stuff, now i know about differentiation, partial differentiation, and differences. math is funky

  • @corruptconverter2616
    @corruptconverter2616 29 วันที่ผ่านมา +2

    It's funny how I, and some others in a discord server I'm in, were working on this at roughly the exact same time this video was released. We got analogues of a lot of things, and I managed to get the antidifferentiation at the end to work for complex values of h (or Delta), albeit with a lot of jank.

  • @KokomiClan
    @KokomiClan หลายเดือนก่อน +11

    Love these vids! Laughed good when I heard:
    "let's leave the exercise to our readers..."
    "You mean viewers" 😂

  • @PaulPower4
    @PaulPower4 หลายเดือนก่อน +1

    The funny part of this is that I feel like I learnt a lot of these concepts way back in Year 7 - I think it may well have been the first maths topic I was taught at comprehensive school - but it was under the topic heading of "nth term" rather than talking about discrete calculus. And then it never really came up again, even once I started doing calculus at A-level, until eventually the idea of "difference equations" (as opposed to differential) came up. Feels like the idea could have been developed more at comprehensive school, and then used as a bridge to regular continuous calculus.

  • @bobross5438
    @bobross5438 หลายเดือนก่อน +6

    Lil bro open a page for people to donate / support your work this stuff is so unique and fun and cool and interesting

  • @stupidtalks8011
    @stupidtalks8011 หลายเดือนก่อน +5

    i recall mathloɡer doinɡ a similar thinɡ

  • @vdinh143
    @vdinh143 28 วันที่ผ่านมา +1

    English Zundamon teaching math? This is what technology was made to do.

  • @navidshm7424
    @navidshm7424 หลายเดือนก่อน +1

    I always find videos like this so amusing

  • @GretgorPooper
    @GretgorPooper 26 วันที่ผ่านมา +1

    Anime girl math is all I needed in my life right now and I didn't even know it.

  • @adoq
    @adoq หลายเดือนก่อน +2

    wow i randomly thought of this while trying to find the area under the graph of a sequence lol. didnt know it was called discrete calculus, thanks

  • @catmacopter8545
    @catmacopter8545 หลายเดือนก่อน +2

    Zundamon if you are taking suggestions it would be really really cool if you looked into the Fast Growing Hierarchy

  • @Patashu
    @Patashu หลายเดือนก่อน +1

    Never thought about how these might relate before. Interesting find

  • @mrhatman675
    @mrhatman675 หลายเดือนก่อน +2

    Just so you know this brach of math is called umbral calculus

  • @jesuseduardobanosgonzalez8116
    @jesuseduardobanosgonzalez8116 หลายเดือนก่อน +2

    Zundamon, please share the references for your videos for people who want to delve deeper into the topics!

  • @klembokable
    @klembokable หลายเดือนก่อน +1

    why is this channel so good? its not even just the waifus making them this good thats just a bonus

  • @artemis2121
    @artemis2121 หลายเดือนก่อน +2

    10:43 the way my jaw dropped

  • @IsZomg
    @IsZomg หลายเดือนก่อน +2

    Another excellent video thank you!

  • @elia0162
    @elia0162 หลายเดือนก่อน +1

    this guys is legit gonna be famous in a year

  • @spagetty01
    @spagetty01 หลายเดือนก่อน +1

    It's like Calculus but you turned on easy mode. Love it🥰

  • @mauorice
    @mauorice หลายเดือนก่อน +1

    Thank you zundamon!

  • @McBobX
    @McBobX หลายเดือนก่อน +6

    That was fun! I mean, going from continuous to discrete numbers is fun!
    My hypothesis on why 2 is similar to e when going into the differences, is that 2 is the integer part of e, and so when you move from continuous to discrete you mostly take the integer part of numbers and work with them.
    Let me know if my theory makes sense 😅

    • @diribigal
      @diribigal หลายเดือนก่อน +9

      That's a nice intuition, but the real key fact is that if you take the series formula for e^x and replace each power x^n with a "falling power"/"falling factorial", then the series evaluates to 2^x.

    • @McBobX
      @McBobX หลายเดือนก่อน +1

      @@diribigal Interesting!

  • @_AbS_
    @_AbS_ หลายเดือนก่อน +1

    You've obtained something like differentiation

  • @m.guypirate6900
    @m.guypirate6900 หลายเดือนก่อน +3

    It seems like if you tried to find an antiderivative in this world, assuming your step value is h, the result would not be the same as in regular calculus, where the antiderivatives differ only be a constant.
    This would be the case (the antiderivatives differing by a +C) if our function only takes on values of the form k + n*h, where k is some constant real number and n is every integer.
    This would also be the case if we imposed the restriction that the antiderivative be continuous, however not all functions would have a continuous antiderivative in this world even if they have an antiderivative. For example, the sign function with f(0) = 1 has derivative 1 on [-h,0) and 0 elsewhere. This derivative cannot possibly have a continuous antiderivative.
    Assume this derivative has a continuous antiderivative g. Observe that g must have the following properties: for all 0.5 > ε > 0, there exists a δ > 0, such that 0 < | x - a | < δ implies | g(x) - g(a) | < ε, and for all h > δ_0 > 0, g( h - δ_0) = g( -δ_0 ) + 1, and g(h) = g(0). This derives from the definition of continuity and the derivative of g.
    Fix 0.5 > ε > 0 and consider continuity at the points x = 0 and x = h. There exist 0 < δ_1, δ_2 < 0.5, such that | x - 0 | < δ_1 implies | g(x) - g(0) | < ε, and | y - h | < δ_2 implies | g(y) - g(h) | < ε. Let x = -δ_0 and y = h - δ_0 with δ_0 < δ_1, δ_2. Then, | g(-δ_0) - g(0) | < ε, and | g(h-δ_0) - g(h) | < ε. Using our properties, we get
    | g(-δ_0) + 1 - g(0) | < ε
    -ε < g(-δ_0) - g(0) + 1 < ε
    -1-ε < g(-δ_0) - g(0) < -1+ε
    g(-δ_0) - g(0) < -1+ε < -ε < g(-δ_0) - g(0),
    a contradiction. Therefore there cannot be a continuous antiderivative of the derivative of this sign function. Let me know if I can simplify this proof or if there is a simpler counterexample. This was just the first that came to mind. This shows that not all well defined functions can have any continuous antiderivatives, even piecewise smooth functions.
    Antiderivatives and derivatives in this world have a lot of different properties. In this world, almost all antiderivatives of continuous functions are continuous nowhere, and relatedly, all well defined functions have a derivative. All well defined functions have antiderivatives, but there exist piecewise smooth functions without continuous antiderivatives. In normal calculus, the antiderivative of a continuous function is continuous, but not all well defined functions have an antiderivative at all, since for example, there is no differentiable function whose derivative is discontinuous everywhere. Without further restrictions, the only thing we can say is that the antiderivative differs only by a +C from other antiderivatives at every set of points of the form k + n*h.
    I know nothing about this topic and am assuming people who actually work with this subject do impose some restrictions on the functions typically, but this is what I conclude from what the video presents. Corrections welcome

    • @m.guypirate6900
      @m.guypirate6900 หลายเดือนก่อน

      i shouldve typed this is LaTeX smh

    • @m.guypirate6900
      @m.guypirate6900 หลายเดือนก่อน

      I suppose what I said at the end there about the existence of antiderivatives is slightly wrong if you consider the antiderivative as an integral, rather than a function that has f as its derivative?

  • @PhoenixEditz69
    @PhoenixEditz69 หลายเดือนก่อน +1

    Calc 1 Students Be Like:
    No Way We Goin Through That Hell Again

  • @NintendoGamer789
    @NintendoGamer789 หลายเดือนก่อน +6

    umbral too

  • @angelofasanaro1584
    @angelofasanaro1584 หลายเดือนก่อน +3

    Zundamon Is AN art

  • @ayoubelazzouzi5600
    @ayoubelazzouzi5600 หลายเดือนก่อน +1

    Great video as always ❤❤

  • @ShaolinMonkster
    @ShaolinMonkster หลายเดือนก่อน +2

    amazing channel

  • @angelofasanaro1584
    @angelofasanaro1584 หลายเดือนก่อน +3

    Umbrella calculus Is Better then raining

  • @cauenunes1882
    @cauenunes1882 หลายเดือนก่อน +3

    Estou aprendendo Cálculo por agora e o canal está me ajudando e muito!! Obrigado❤❤

  • @NihalPushkar
    @NihalPushkar หลายเดือนก่อน +1

    10:43, I have an very good example to extend this to n-Dimensional space for general function, would like to make a video on that? From there we can actually show exterior calculus with tensors of various forms, which in topology very much helps to separate line to area vectors. Let me know if we have a chance to collaborate on this

  • @sheepcommander_
    @sheepcommander_ หลายเดือนก่อน +6

    dewivative

  • @alexmore3865
    @alexmore3865 หลายเดือนก่อน +6

    this... this is

  • @RisingStarBlazeOfficial
    @RisingStarBlazeOfficial หลายเดือนก่อน +1

    Math at its finest

  • @bobross5438
    @bobross5438 หลายเดือนก่อน +2

    10:35 I literally pogged this shit is so poggers wowee

  • @APaleDot
    @APaleDot หลายเดือนก่อน +4

    dewivatiwe :3

  • @faridasyraf1612
    @faridasyraf1612 28 วันที่ผ่านมา +1

    i have been binging on your videos and i loved every one of them! do you have a patreon or some other platform to support this channel?

  • @talhochberg5062
    @talhochberg5062 28 วันที่ผ่านมา +1

    that's just learning derivatives backwards

  • @cuongvd
    @cuongvd 26 วันที่ผ่านมา +1

    umm... its more than a week now

  • @ehsassethi3321
    @ehsassethi3321 25 วันที่ผ่านมา +1

    one for L hopital rule video plz i am a jee aspirants and tbh i need this my exam is in 40 days i loved it i am going to bing watch your every video tonight

  • @catmacopter8545
    @catmacopter8545 หลายเดือนก่อน +1

    this is the forward difference - there is also the backwards difference f(x)-f(x-1) = ∆f(x-1).
    i recently read about the "symmetric derivative", whos analogue here would be (f(x+1)-f(x-1))/2. Does that have any interesting properties (besides for being the average of the next and previous elements of the sequence)

  • @paka9999_
    @paka9999_ หลายเดือนก่อน +9

    AAH, it’s like that, huh. I understand everything now
    (Doesn’t get it all)

    • @wargreymon2024
      @wargreymon2024 หลายเดือนก่อน +6

      it's an introduction, the rabbit hole is deep on this topic...

    • @ElusiveEel
      @ElusiveEel หลายเดือนก่อน

      @@wargreymon2024 yeah just as with calculus the difficult part comes when solving sums
      one of the mid-level exercises on summation by parts in Concrete Maths escaped me the last few times I tried it

  • @tojiKilla
    @tojiKilla 28 วันที่ผ่านมา +1

    This is so damn good

  • @pinzau-87471
    @pinzau-87471 29 วันที่ผ่านมา +1

    Do P-adic numbers next!!!!
    I need help with those ngl

  • @MsGinko
    @MsGinko 28 วันที่ผ่านมา +1

    Zundamon, could you fix your profile picture? It would be nice if Zundamon looked to the right. This way you can leave space for the heart.

  • @wandrespupilo8046
    @wandrespupilo8046 หลายเดือนก่อน +1

    where in math is this used? i've never seen such thing!
    the conexions to normal calculus are so interesting

  • @haneechaitanya3832
    @haneechaitanya3832 หลายเดือนก่อน +1

    thanks a lot.. i always wondered what could be the analog of calculus if we discretise numbers. I got this doubt while thinking whether anyone tried using discrete math so it might fit better for quantum mechanics ( i just thought so, i didn’t read anywhere)

  • @spacemanwillie
    @spacemanwillie หลายเดือนก่อน +2

    Now... Is there a discrete analogue of the Euler identity?

  • @tothm129
    @tothm129 28 วันที่ผ่านมา +1

    Wonderful. I will be playing around with integration.

    • @tothm129
      @tothm129 19 วันที่ผ่านมา

      ok, wolfram alpha told me that Δ(Polygama(0,x)+c)=1/x?????

  • @adamcionoob3912
    @adamcionoob3912 หลายเดือนก่อน +1

    Cool video as always. I learned something new. But now i wonder, what would be the derivative of a falling power, I will check it.

  • @atommax_1676
    @atommax_1676 หลายเดือนก่อน +1

    8:08 Pierre de Fermat reference

  • @zzasdfwas
    @zzasdfwas หลายเดือนก่อน +1

    This is just touching the surface. The techniques for solving difference equations closely mirrors the techniques for solving differential equations.

  • @tasin2776
    @tasin2776 หลายเดือนก่อน +2

    The style reminds me of yukkuri from touhou

  • @darkknight1105
    @darkknight1105 หลายเดือนก่อน +2

    Fascinating

  • @chills_tiny_mom
    @chills_tiny_mom 26 วันที่ผ่านมา +1

    Pls do statistics 🙏

  • @CommDao
    @CommDao หลายเดือนก่อน +1

    Oh what?! These are in English now??

  • @mathfromscratch
    @mathfromscratch 26 วันที่ผ่านมา +1

    This is amazing! Tell me, how do they speak English? Voicevox only understands Japanese((

    • @zunda-theorem-en
      @zunda-theorem-en  26 วันที่ผ่านมา +1

      It needs to be combined with other tools.
      You can find videos attempting the same challenge on TH-cam! 👍

  • @bagelnine9
    @bagelnine9 หลายเดือนก่อน +1

    What about a continuous product?

  • @pladselsker8340
    @pladselsker8340 หลายเดือนก่อน +1

    I'm curious, did you draw the characters yourself? Also, I would love to learn more about what you are using for the character voices.

    • @zunda-theorem-en
      @zunda-theorem-en  หลายเดือนก่อน +1

      Please check the video description! 😆
      As for the voices, they need to be combined with other tools.
      You can also find videos trying the same challenge on TH-cam! 👍

  • @atarashi8513
    @atarashi8513 28 วันที่ผ่านมา +1

    Zooba! 0w0 cant wait for linear algebra

  • @kakarooottttt4298
    @kakarooottttt4298 หลายเดือนก่อน +1

    Yay another anime girls math video

  • @angelofasanaro1584
    @angelofasanaro1584 หลายเดือนก่อน +1

    I Copy summary and explain myself every point.

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +2

    I saw this in physics

    • @z0ru4_
      @z0ru4_ หลายเดือนก่อน

      PHYSICS!???!!?!?!!!?

    • @cdkw2
      @cdkw2 หลายเดือนก่อน

      @@z0ru4_ yes!

    • @heinrich.hitzinger
      @heinrich.hitzinger หลายเดือนก่อน

      ​@@z0ru4_Theoretical physics: 👁👄👁

  • @screenedfoliage
    @screenedfoliage 9 วันที่ผ่านมา +1

    uhh what the sigma