JuliaSim: Machine Learning Accelerated Modeling and Simulation | Chris Rackauckas | JuliaCon 2021

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ม.ค. 2025

ความคิดเห็น • 5

  • @chrisrackauckasofficial
    @chrisrackauckasofficial 3 ปีที่แล้ว +14

    For those interested, the JuliaSim product demo which ran just after this talk in the Julia Computing Sponsor Talk can be found at th-cam.com/video/teqS3O362Ts/w-d-xo.html . Still pre-beta, but I hope to be sharing details about a launch product soon. Thanks for the feedback community!

  • @LayneSadler
    @LayneSadler 3 ปีที่แล้ว +24

    - Vision: scalable cloud backend (distributed, gpu, parallel workloads) + transfer learning + GUIs... for each domain.
    - Just use Julia instead of optimizing MATLAB/R/Python workflows in C.
    - Speed comes from Julia, but moreover deep scientific computing and modeling ecosystem.
    - Embed neural networks as the missing params in differential equations.
    - Neural nets alone fail on stiff equations, so a hybrid approach is needed.
    - Using pretrained surrogate models results in ~ up to 700x speedup.

  • @simoneberlein5372
    @simoneberlein5372 3 ปีที่แล้ว +4

    My favorite talk from this year's JuliaCon :)

  • @deanmarris_1
    @deanmarris_1 3 ปีที่แล้ว +1

    Very interesting talk and right on the money