Mod-02 Lec-7 LUB Axiom

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น •

  • @suhailawm
    @suhailawm 4 ปีที่แล้ว +4

    19:39 wow. super logic sir. wonderfull. Thanks aloooooooot sir.

  • @this.is.me.obviously
    @this.is.me.obviously 4 ปีที่แล้ว

    @25:00 Shouldn't there be a strict inequality? Cause alpha-epsilon is strictly less than 2.

  • @GopinathShanmugam
    @GopinathShanmugam 7 ปีที่แล้ว +4

    Sir, what is the difference between Maximum and Supremum

    • @sumitkumar-er4ye
      @sumitkumar-er4ye 6 ปีที่แล้ว +1

      supremum is same as maximum but if it belongs to the set. i.e. if supremum belongs to the set then it is called maximum element.

  • @satyajithbommanaboyana5596
    @satyajithbommanaboyana5596 4 ปีที่แล้ว

    25:04 How is that we can say \forall \epsilon > 0, we have \alpha^2 + \epsilon^2 - 2 \alpha \epsilon \leq 2 ?
    22:16 we have a condition on \epsilon that \epsilon < \alpha
    I think it should be for any 0 < \epsilon < \alpha, \alpha^2 + \epsilon^2 - 2 \alpha \epsilon \leq 2 .
    In which case, we can't conclude that \alpha^2 \leq 2. Right?
    What am I missing?

    • @gokulakrishnancandassamy4995
      @gokulakrishnancandassamy4995 2 ปีที่แล้ว +1

      I too have the same question. Have you figured it out?

    • @NisargJain
      @NisargJain 2 ปีที่แล้ว

      @@gokulakrishnancandassamy4995 this statement is written from LUB axiom, which states that for all \epsilon>0, if alpha is an LUB then, \alpha-\epsilon < x < \alpha. and since \alpha^2 + \epsilon^2 - 2 \alpha \epsilon

  • @usmanhassan1887
    @usmanhassan1887 4 ปีที่แล้ว +1

    Superb explanation.

  • @sairamithineni2588
    @sairamithineni2588 8 ปีที่แล้ว +1

    sir...if you consider 2^N set can't dat have any element which is very bigger than N...( then how does this statement N is bounded above will be valid )..

    • @PiAlphaSB
      @PiAlphaSB 7 ปีที่แล้ว

      N is NOT bounded above

  • @shashvatshukla
    @shashvatshukla 7 ปีที่แล้ว +1

    Does anyone have a link to the paper mentioned? "The role of LUB axiom in real analysis"

  • @sabrishgopalakrishnan5156
    @sabrishgopalakrishnan5156 5 ปีที่แล้ว

    wont 1/b-a > 1/b given 0 < a < b?

  • @SumanthLazarus
    @SumanthLazarus 6 ปีที่แล้ว

    LUB Completeness Axiom: Foundation for RA. Consequence of it are, Archimedean property of reals, Q dense in R, unique x in R for x^n=y.

  • @krishnannairsasikumar3731
    @krishnannairsasikumar3731 3 ปีที่แล้ว

    sir
    while proving alpha^2 less than or equal to 2 ,the choice of hepsilon cannot be arbitrary to conclude it.so one should be careful about it
    so please clarify

    • @gokulakrishnancandassamy4995
      @gokulakrishnancandassamy4995 2 ปีที่แล้ว

      I have the same question. We chose \epsilon such that \alpha - \epsilon is strictly positive. So, the statement \alpha^2 - 2 * \alpha * \epsilon + \epsilon^2

    • @DiegoGonzalez-zs9wz
      @DiegoGonzalez-zs9wz 2 ปีที่แล้ว

      @@gokulakrishnancandassamy4995 you're right....

    • @NisargJain
      @NisargJain 2 ปีที่แล้ว

      He did provide a choice for epsilon (which was 2-alpha^2/(2alpha+1) ) after the proof.

  • @Kashish0609
    @Kashish0609 5 ปีที่แล้ว

    Difference bw n ,N . ????

  • @jenitacharles258
    @jenitacharles258 4 ปีที่แล้ว +1

    Sir itshard forme to understand from 29 th minute

  • @shashvatshukla
    @shashvatshukla 7 ปีที่แล้ว +3

    Lecture 7 and still going!

    • @jbm5195
      @jbm5195 2 ปีที่แล้ว

      I just got here. Did you finish?

    • @shashvatshukla
      @shashvatshukla 2 ปีที่แล้ว

      @@jbm5195 this was 4 years ago mate, and we discussed already on the other lecture's comments

    • @jbm5195
      @jbm5195 2 ปีที่แล้ว

      @@shashvatshukla oh sorry about that. I just got here, looking for motivation every step of the way. And sorry I didn’t remember the name from the other lecture. Sorry bout that

    • @shashvatshukla
      @shashvatshukla 2 ปีที่แล้ว +2

      @@jbm5195 No problem. All the best! Real Analysis comes up all across mathematics, so I think you will only be thankful for the effort you put in now. But don't be afraid to stop if there is a better learning resource for you, I think it is good to learn from multiple sources.

  • @ritesharora6032
    @ritesharora6032 6 ปีที่แล้ว +2

    Proof of Archimedean property is wrong

    • @sahilkakkar2156
      @sahilkakkar2156 5 ปีที่แล้ว +2

      It is absolutely correct. In fact, it is BEAUTIFUL!

    • @Ayan-rh6gj
      @Ayan-rh6gj 4 ปีที่แล้ว +1

      It is wrong becouse the contradiction part is wrong. Alpha can be equal to n

    • @NisargJain
      @NisargJain 4 ปีที่แล้ว

      @@Ayan-rh6gj I don't see how it is wrong? Could you elaborate?

    • @antoniomantovani3147
      @antoniomantovani3147 3 ปีที่แล้ว

      i have a better one, naiming ....
      (j,k,l,m,) all member of N
      p and q member of Q
      p < q
      p = j/k
      q = l/m
      n = k (l+1)
      now we can write
      n * p = k (l+1) * j/k =( l+1) * j > (l+1) > l/m = q

    • @DrSnorlax
      @DrSnorlax 3 ปีที่แล้ว

      @@antoniomantovani3147 your proof is incomplete since you have only proved the statement for rationals, but the Archemedian property is valid FOR ALL real numbers...