The Quantum Barrier Potential Part 2: Defining the Transmission and Reflection Coefficients

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.ย. 2024

ความคิดเห็น • 83

  • @spacebarbarian._
    @spacebarbarian._ 3 ปีที่แล้ว +96

    I've never seen such a dedicated channel to make the common public aware about what science really is and how great it is. Keep up the good work Prof! 👍✌️

  • @thegiggsboson
    @thegiggsboson 3 ปีที่แล้ว +51

    I just learned this formally at university. This is a brilliant video of this topic.

  • @jackhall3758
    @jackhall3758 3 ปีที่แล้ว +17

    Out of all the modules that I've learned at university in the past 2 years; this quantum mechanical barrier problem has been one of my favourites and close to my heart.
    The way you explain the algebra is superb👌 and I love it❤

  • @filippotirellib6382
    @filippotirellib6382 2 ปีที่แล้ว +14

    Please continue this series! it's pure gold for students that have to deal with quantum physics courses. Thanks!

  • @S1nwar
    @S1nwar 3 ปีที่แล้ว +16

    oh man i vaguely remember doing these calculations in theoretical physics class 3 like 13 years ago, feels almost nostalgic

    • @AshtonZee
      @AshtonZee 3 ปีที่แล้ว +2

      Holy fk. Man my highschool and college didn't even try to show us this stuff.

  • @UaExRacer
    @UaExRacer 2 ปีที่แล้ว +13

    I hated Quantum Mechanics until I saw this video. Thank you so much, the simple explanation of such a (hard to understand) problem is fantastic

  • @p.b.2903
    @p.b.2903 2 ปีที่แล้ว +10

    Thanks! However at 9:49 I think you missed to factor out the “a” when you took out e ^aik which you took out as e^ik however since you multiplier t by t* it didn’t matter as either e^ik . e^-ikx would be cancelled just as would e ^ aik . e ^-aik . Otherwise unless I am wrong minus this minor factoring out error it is a very great explanation much better than MIT lectures! If I am wrong plz correct me!

    • @junaiddooast7435
      @junaiddooast7435 9 หลายเดือนก่อน

      i have never found mit lectures very helpful .

  • @infinitasalo472
    @infinitasalo472 2 ปีที่แล้ว +4

    Thanks man, you saved my life, I had this as a homework problem and spent like five hours trying to work through the algebra to no avail before finding your vid!

  • @gh0stable
    @gh0stable 2 ปีที่แล้ว +4

    This and the previous video are super in-depth! Professor Dave, thank you so much for doing this!

  • @TheBackwardBros
    @TheBackwardBros 9 หลายเดือนก่อน +2

    Hey, thank you so much.
    I have a question: At 18:32 you say that for E1. But you do always have to calculate T again for E>V, if you want to plot it for eta>1, right? (as you do in the video) Because to get the first expression for T we used the fact that E

  • @jalapenoandbanana
    @jalapenoandbanana 3 ปีที่แล้ว +3

    This is the first time I have seen a tutorial like this so I'll watch

  • @paradoxks
    @paradoxks 3 ปีที่แล้ว +3

    this is the cleanest explanation wow

  • @rupadityaadireddy110
    @rupadityaadireddy110 9 หลายเดือนก่อน +2

    00:11 Quantum tunneling allows particles with less energy than a barrier's height to still have a non-zero probability of crossing it.
    03:25 The transmission and reflection coefficients describe the likelihood of a quantum particle passing through or being reflected by a barrier.
    06:36 Manipulations on the system of equations lead to expressions for lower case f, lower case g, and lower case t.
    09:36 Simplifying the equation by using the definitions of hyperbolic sine and cosine
    12:33 The transmission factor T is defined as t star times t.
    15:34 The calculation involves squaring a binomial and simplifying the expression.
    18:21 R and T coefficients determine the reflection and transmission probabilities of an electron encountering a barrier.
    21:11 Quantum tunneling allows particles to traverse barriers with lower energy than the barrier height.
    23:52 Transmission and reflection coefficients depend on the particle's energy relative to the barrier height.
    26:47 Quantum mechanics has technological applications
    Crafted by Merlin AI.

  • @solup7991
    @solup7991 9 หลายเดือนก่อน +1

    Amazing video broski. Do you mind showing the code you used for graphing the coefficients?

  • @danielc5647
    @danielc5647 ปีที่แล้ว +2

    9:46 the common portion has a in it, so the exponential would be something like this e^(ikoa)

  • @ufuk5396
    @ufuk5396 2 ปีที่แล้ว +1

    I have understand weeks worth of collage content in 20 min. Unbelivable

  • @jainandanmodi1124
    @jainandanmodi1124 2 ปีที่แล้ว +1

    Thank you, Sir. I wish science could be taught in this simplified way at universities.

  • @Katastrofrecs
    @Katastrofrecs 2 ปีที่แล้ว +2

    Professor Dave saved my day

  • @cosmicnomad8575
    @cosmicnomad8575 2 ปีที่แล้ว +1

    Thanks for the video! Such a fascinating concept!

  • @hwway4488
    @hwway4488 3 ปีที่แล้ว +2

    Wow thanks Prof Dave!

  • @carolinamoravecdevianaborg9602
    @carolinamoravecdevianaborg9602 ปีที่แล้ว +1

    Thank you so very much!

  • @rupamkundu6300
    @rupamkundu6300 ปีที่แล้ว +1

    I got tunneled straight to heaven, after calculating this with you!

  • @alisuliman6208
    @alisuliman6208 ปีที่แล้ว +1

    a brilliant video

  • @AS-ds4in
    @AS-ds4in 3 ปีที่แล้ว +3

    hello sir great job i have a doubt in quantum mechanics-
    in quantum fluctuations energy is created so it violates newton's laws of conservation of energy,right?

    • @sandretheteacher363
      @sandretheteacher363 3 ปีที่แล้ว

      I'm a Quantum Chemist, let me explain - In quantum mechanics, small quanta of energy can actually appear spontaneously.

    • @scptime1188
      @scptime1188 3 ปีที่แล้ว +1

      As Sandre said, small quanta of energy can appear spontaneously as long as they are annihilated by an antiparticle within the time required by the Heisenburg Uncertainty Principle, or else conservation of energy is violated.

  • @filipposntouris9839
    @filipposntouris9839 2 ปีที่แล้ว +1

    Very helpful! Can't thank you enough!

  • @alijoueizadeh2896
    @alijoueizadeh2896 11 หลายเดือนก่อน

    Thank you for your time and effort.

  • @sciencewolf7775
    @sciencewolf7775 3 ปีที่แล้ว +12

    Who knew learning quantum physics is so fun

  • @S1nwar
    @S1nwar 3 ปีที่แล้ว +3

    did you do commutators of operators yet? made for some interesting excercises cause its so unintuitive that quantummechanical operators dont commutate like normal numbers do

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  3 ปีที่แล้ว +7

      yep that was the first one in this miniseries! like 6 ago, the one on operators in QM

  • @MiguelGarcia-zx1qj
    @MiguelGarcia-zx1qj 3 ปีที่แล้ว +3

    I’ve always wanted to get into the nitty-gritty of Quantum Mechanics. And I’m having it now, mostly because of your videos (I had previous qualitative understanding of the issues, but not the technical, I mean quantitative, details -that make most of the difference in Science). So, most sincere thanks to you for that.
    When, around time mark 23:37, you show the transmission and reflection coefficients for case E>V0, the shape of the curves suggested to me interference effects between the width of the barrier and some wave length (associated with the electron?). Can you comment on that?

    • @ANGRYpooCHUCKER
      @ANGRYpooCHUCKER 9 หลายเดือนก่อน +1

      Old comment but in case you're still wondering to this day lol:
      The periodic (cyclical) behavior of the T/R coefficients (in the case that the particle has more energy than the barrier, so goes "over" but yet can still bounce back) is a result of the wavefunction only being able to pass through/over the barrier at specific points along its wave, so to speak. The shape of the wave at the barrier must be in line with the shape of a wave that is on the other side. That only occurs at regular points along the wavefunction's wave cycle, so you get that up and down behavior on the graph.
      A simple analogy: you throw a baseball over the top of a wall and the baseball has some spin to it. There is a robot on the other side that can detect whether that ball is at specific increments of angles, and only allows through those baseballs which are at those specific angle increments in their rotation. Example: If by the time ball reaches the top of the wall, the ball has rotated exactly 30 degrees (more or less) or any multiple of 30 degrees*, then the robot swats it away (reflection). If that ball has rotated by any other angle, it's allowed through. Of course, the robot is invisible and there is actually no robot. But you get the picture hopefully :)
      The shape of the wavefunction must be in alignment with the expected shape on the other side.
      I don't know if you could call that "interference" so much as quantization. The allowed states for transmission are many, but there are states which follow a quantization behavior that cause reflection.
      * Note: The graph clearly shows that the quantization is not as simple as "any multiple of some angle", as the distance between reflection peaks changes over time. Nevertheless, they are quantized in the sense that they follow a periodic behavior where specific energies have the most likely chance of getting reflected.

  • @antonhengst8667
    @antonhengst8667 3 ปีที่แล้ว +1

    God bless these videos

  • @krzysztofmatuszek
    @krzysztofmatuszek ปีที่แล้ว +2

    20:20 - you took the numerical value for h, not h-bar. Such a minor mistake in a great video, but mistake nonetheless!

  • @matrix1175
    @matrix1175 4 หลายเดือนก่อน

    I'm not sure, but in 20:24 the Dirac's constant / hbar is wrong? Shouldn't it be something around 6.582119569509073*10^(-16)?
    you use planck constant in eV not Dirac's constant, if I am not wrong.

  • @mushrafi2797
    @mushrafi2797 ปีที่แล้ว

    This is just amazing . Thankyou so much!

  • @smartass0124
    @smartass0124 3 ปีที่แล้ว +2

    I always thought of energy as any particles smaller then atoms. But energy not being a substance but. Action with in a subspace. Fit more with spiritualism . Even light . All though have ions electrons also talked about in that matter by both light science and spiritual speaking. .and can you replace word ura for heat . And chee or bio impulses and mean the same thing

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  3 ปีที่แล้ว +3

      You should check out my quantum mysticism debunk.

    • @smartass0124
      @smartass0124 3 ปีที่แล้ว

      @@ProfessorDaveExplains that's why I came hear to comment about

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  3 ปีที่แล้ว +2

      Well you really should watch that video.

    • @smartass0124
      @smartass0124 3 ปีที่แล้ว

      @@ProfessorDaveExplains I did that's why commenting in more recent video

  • @timss899
    @timss899 3 ปีที่แล้ว +2

    I have been blessed, thank you Jesus

  • @meylovegoods7256
    @meylovegoods7256 3 ปีที่แล้ว +1

    Professor Dave, sorry i dont quite grasp it yet, should it be e^(ik0a) pulled out at 9:46?

    • @Eggtartt0922
      @Eggtartt0922 2 ปีที่แล้ว

      yup there is a missing a

    • @Eggtartt0922
      @Eggtartt0922 2 ปีที่แล้ว

      although it cancel out very soon, it still make a little confuse XD

  • @micbroc6435
    @micbroc6435 3 ปีที่แล้ว +6

    As Rodney Dangerfield said in the movie Back to School “the answer is 4?”

  • @edgardhsaccsamejia6129
    @edgardhsaccsamejia6129 11 หลายเดือนก่อน

    Tengo una duda, y es una vez hallado los coeficientes de transmisión y reflexión, que sigue despues, ya se tienen las autoenergías, pero los autovectores no se llegaron a encontrar, porque teniamos el problema que eran 4 ecuaciones y 5 incognitas, esto nos llevo a definir estos coeficientes, se pueden hallar los valores de A,B,C,F y G? Quisiera expresar las funciones de onda con sus valores ya normalizados, pues A*.A+B*.B=1, agradeceria que se pueda resolver esa duda, tal vez no me he dado cuenta de algo y ya tengo la respuesta

  • @quimicogames1158
    @quimicogames1158 3 ปีที่แล้ว +1

    Teacher, in 17:59, what happened with Vo^2 on the denominator?

    • @quimicogames1158
      @quimicogames1158 3 ปีที่แล้ว +1

      Forgive me, i understended, Vo^2 is Vo*Vo/E = Vo/ņ = 1/E

  • @nicholasgianotti7939
    @nicholasgianotti7939 3 ปีที่แล้ว

    Great video

  • @landrew3847
    @landrew3847 ปีที่แล้ว

    could you show how this would change if the barrier was in an infinite quantum well too? like if there were 5 regions instead of 3?

  • @mikevilters6237
    @mikevilters6237 3 ปีที่แล้ว +1

    amazing video :)

  • @edditspaghettit9515
    @edditspaghettit9515 3 ปีที่แล้ว +4

    I wish I was this excited to learn when I was still in high school 😅

  • @aaronwewer1701
    @aaronwewer1701 3 ปีที่แล้ว +4

    Reading the title, being confused af but still clicking on the Video, the Intro makes me feel that I am goin to understand something.
    That stopped after the first min tho

    • @12345.......
      @12345....... 3 ปีที่แล้ว +1

      🥉

    • @Luke-yx2lw
      @Luke-yx2lw 3 ปีที่แล้ว +1

      You lasted that long,good work.

  • @AshokKumar-eq3xk
    @AshokKumar-eq3xk 3 ปีที่แล้ว +1

    Quantam physics my best topics

  • @rishecks
    @rishecks 5 หลายเดือนก่อน

    notation goes crazy

  • @nasapayrollsystem8701
    @nasapayrollsystem8701 3 ปีที่แล้ว +1

    -15:40 ...." now this is where we get clever " ...
    You mean .. everything up to this point was not clever.? And I've just watched 10 minutes of Unclever video .. sheeesh

  • @backstreetfan2887
    @backstreetfan2887 3 ปีที่แล้ว

    amazing

  • @Ab-yk1dy
    @Ab-yk1dy 3 ปีที่แล้ว +1

    Nice

  • @SangheiliSpecOp
    @SangheiliSpecOp 3 ปีที่แล้ว

    Belissimo

  • @Adarsh-me6uh
    @Adarsh-me6uh 3 ปีที่แล้ว +1

    Houuuuuu such a question 😱😱😱😱😱i got scared my god😱😱😱😱🙋🏻‍♂️

  • @saadhassan9469
    @saadhassan9469 2 ปีที่แล้ว

    King Man

  • @gigachad2419
    @gigachad2419 3 ปีที่แล้ว +1

  • @ironrain1x
    @ironrain1x 3 ปีที่แล้ว

    I experienced flashbacks and PTSD from pchem when I saw this video on my feed.

    • @chriswinchell1570
      @chriswinchell1570 2 ปีที่แล้ว

      Hahahaha I know what you mean. It used to be a mandatory junior level class in EE at the university. It was taught by a 6’ 2” 280 lb prof with no sense of humor.

  • @basilmiller3354
    @basilmiller3354 3 ปีที่แล้ว +1

    Завтра экзамен в России, ЕГЭ, по химии. Да пребудет с ними сила и знания химического Иисуса

  • @BigGDizzlle78
    @BigGDizzlle78 3 ปีที่แล้ว

    Let's do more political figure

  • @valen8560
    @valen8560 3 ปีที่แล้ว

    WTF

  • @griffgruff1
    @griffgruff1 ปีที่แล้ว

    Great video.
    For some people, the following python code may be useful. It plots T and R vs eta:
    # Ref: th-cam.com/video/kUR98x1tH0c/w-d-xo.html&ab_channel=ProfessorDaveExplains
    import numpy as np
    from matplotlib import pyplot as plt
    L = 1e-9 # [m]
    m = 9.11e-31 # [kg]
    hbar = 1.055e-34 # [J s]
    V0 = 1.6e-18 # [J]
    N = 200
    eta1 = np.linspace(0.01,0.999, N) # EV0
    E1 = eta1*V0
    E2 = eta2*V0
    T1 = np.zeros(N) # EV0
    for i in range(N):
    k1 = np.sqrt(2*m*(V0-E1[i]))/hbar
    k2 = np.sqrt(2*m*(E2[i]-V0))/hbar
    T1[i] = 1/(V0**2*np.sinh(k1*L)**2/(4*E1[i]*(V0-E1[i]))+1)
    T2[i] = 1/(V0**2*np.sin(k2*L)**2/(4*E2[i]*(E2[i]-V0))+1)
    #print(f"k1 = {k1}, T = {T2[i]}")

    fig, ax = plt.subplots(figsize=(12,9))
    ax.plot(eta1, T1, '--b',linewidth=3,label="T (EVo)")
    ax.plot(eta1, 1-T1, '--r',linewidth=3,label="R (EVo")
    ax.set_xlabel(r'$\eta=E/V_0$)',fontsize=20)
    ax.set_ylabel(r'$T, R$',fontsize=20)
    ax.tick_params(axis='both', which='major', labelsize=18)
    ax.set_title(r'Transmission and Reflection Coefficients', fontsize=28)
    ax.grid()
    ax.legend(fontsize=18)
    plt.show()
    fig.tight_layout()

  • @kalpanasodavadia6287
    @kalpanasodavadia6287 3 ปีที่แล้ว