A Very Radical Equation Solved in Two Ways

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ธ.ค. 2024

ความคิดเห็น • 11

  • @pietergeerkens6324
    @pietergeerkens6324 ปีที่แล้ว +1

    Nice!
    I first brute-forced by successive squaring; then thought to make the substitution x = sin^2 theta. As it turns out, that substitution is the identical algebra as your first solution, but with more characters to write on each line, and cos theta appearing instead of your z and y.

    • @ShortsOfSyber
      @ShortsOfSyber  ปีที่แล้ว +1

      Nice work!

    • @mcwulf25
      @mcwulf25 ปีที่แล้ว

      It certainly has a Pythagoras feel to it. Also substituting X=cos^2 theta leaves the expression looking like a quadratic formula!!! Unfortunately neither of these identities help to find a short cut to the answer.

  • @msmbpc24
    @msmbpc24 ปีที่แล้ว

    Very interesting first method.

  • @nicolascamargo8339
    @nicolascamargo8339 ปีที่แล้ว

    Excelentes métodos

  • @mcwulf25
    @mcwulf25 ปีที่แล้ว

    I substituted y^2 = x giving me
    y + √(y^2 - √(1-y^2)) = 1
    y^2 - √(1-y^2) = (1-y)^2
    Move things around and we have difference of squares
    y^2 - (1-y)^2 = √(1-y^2)
    The LHS reduces to 2y-1 so
    (2y-1)^2 = 1-y^2
    The 1s cancel as does the y (y /= 0) and we have y=4/5
    So x = y^2 = 16/25
    5y = 4

  • @allanmarder456
    @allanmarder456 ปีที่แล้ว

    Let A=sqrt(x) B=sqrt(1-x) so B^2 = 1- A^2 or A^2 + B^2 =1 and the original equation becomes A + sqrt(A^2 -B)=1
    Thus 1-A= sqrt(A^2 -B) square this to get (1-A)^2 =1 -2A + A^2 =A^2 - B or B=2A-1 substitute into A^2 + B^2 =1
    A^2 + (2A-1)^2 =1 or 5(A^2) -4A =0 or A*(5A-4) =0 A=0 leads to an invalid result so A=4/5 and x=16/25.

  • @yoav613
    @yoav613 ปีที่แล้ว +1

    Nice and easy

    • @mcwulf25
      @mcwulf25 ปีที่แล้ว

      I wouldn't say easy. Not unless you are familiar with these types of problems. I had to try a few different things before I just squared it anyway!

  • @barberickarc3460
    @barberickarc3460 ปีที่แล้ว

    Pretty simp to be honest. The only solution is 16/25.
    Just keep squaring and canceling and you'll end up with two solutions, the other is x=0 which is extraneous