YOLO11: How to Train for Object Detection | Live Coding & Q&A (Sep 30)

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 21

  • @culture2355
    @culture2355 3 หลายเดือนก่อน +7

    Tutorial starts at 14:21

  • @B4l0ur
    @B4l0ur 3 หลายเดือนก่อน +1

    How can I then deploy the trained model on roboflow pls ? It is said it is not supported and if i canhed to yolov8 there is a depedency issue :
    ultralytics==8.0.196 is required whereas ultralytics==8.3.2 is installed

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน

      We are still working on it ;) stay tuned

  • @fzgarcia
    @fzgarcia 3 หลายเดือนก่อน +1

    Hello, I have some questions about neural network processing with YOLO... I have a scenario where I need to identify coffee boxes whose only difference is the color to identify one type of coffee as different from another. I have always believed that for performance reasons, network training converts images to grayscale to work on only 1 color channel and does the same when inferring new images. Is this understanding correct? Is it possible to train the models considering the colors, the 3 RGB channels? Or would the best option be to identify the objects (bounding boxes) and perform post-processing with OpenCV, for example, in the bouding box region to identify the closest color? Thanks

    • @wangyubin1106
      @wangyubin1106 3 หลายเดือนก่อน

      you may turn off the color data augmentation. For coco object detection, the NN should neglect color info。

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน +1

      I think that most neural networks use all color channels. A cool example is my football AI project: th-cam.com/video/aBVGKoNZQUw/w-d-xo.html I think it's safe to assume that the model distinguishing players from referees and goalkeepers is largely based on the color of their uniforms.
      I think that a single-stage pipeline makes a lot of sense, especially as a POC version. A multi-stage solution also makes a lot of sense, but it is prone to errors due to, for example, changes in lighting.

  • @OnuralpSEZER
    @OnuralpSEZER 3 หลายเดือนก่อน

    Thank you so much for stream 🎉😊

  • @ramazanoguz-q4n
    @ramazanoguz-q4n 3 หลายเดือนก่อน +1

    I am working on a project and considering using Roboflow. In my project, I will classify the geometric shapes (triangle, quadrilateral, circle, zigzag, etc.) found on shoe soles. At this point, I will label them using object detection. What is your suggestion on this?

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน

      Sounds great! Any specific problems you are facing?

    • @ramazanoguz-q4n
      @ramazanoguz-q4n 3 หลายเดือนก่อน

      @@Roboflow I am considering labeling and classifying the geometric shapes found on shoe soles using the object detection method. I plan to use thousands of shoes for my project. At this point, would it be appropriate to use object detection for this purpose? Is nested labeling a suitable approach, such as labeling both a rectangle and a star inside it?

  • @14types
    @14types 3 หลายเดือนก่อน +1

    I want to put a camera at the front door and identify visitors - my family/stranger. What is the best way to do this?

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน

      Make some photos. Create dataset (probably 100 images for start). Train a nano model. Deploy raspberry pi.

    • @14types
      @14types 3 หลายเดือนก่อน

      @@Roboflow can yolo11 do this? I've just never seen Yolo distinguish people's faces. Usually it just distinguishes between a person/dog, etc. i work with esp32cam, not raspberry.

    • @14types
      @14types 3 หลายเดือนก่อน +1

      @@Roboflow I will send the photos to the server and then pass them through the neural network

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน

      If you don't plan to run the inference locally, the code you'll run on device will be really simple.

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน +1

      It can as long as thee set of people you want to detect is small. YOLO is only efficient up until 80-100 classes, so it's not really applicable in large-scale face recognition systems, but it can work for small problems like this.

  • @felixkuria1250
    @felixkuria1250 3 หลายเดือนก่อน

    Can I use Yolo11 for tracking

  • @krupachary7895
    @krupachary7895 3 หลายเดือนก่อน

    Architecture diagram sir?

  • @umer6500
    @umer6500 3 หลายเดือนก่อน +1

    What's the secret roboflow key

    • @Roboflow
      @Roboflow  3 หลายเดือนก่อน

      YOLO11 notebook contains information on how to retrieve it