Definite integral by change of variable

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 25

  • @danielsatvati8666
    @danielsatvati8666 ปีที่แล้ว +12

    Man I love this channel

  • @farkliyahya
    @farkliyahya ปีที่แล้ว +12

    I'm starting to binge watch your videos

  • @mondayizuchukwu2733
    @mondayizuchukwu2733 ปีที่แล้ว +4

    U re gifted in teaching maths how i wish u handle physics as well

  • @IrvinMoonga-rw4ul
    @IrvinMoonga-rw4ul ปีที่แล้ว +3

    Whoever made you a lecturer is a genius!❤

  • @KaivalyaChess
    @KaivalyaChess 16 วันที่ผ่านมา

    sir you will always be the best math yt channel

  • @danielcarrier3577
    @danielcarrier3577 4 หลายเดือนก่อน

    What a gift for teaching!

  • @basilabdalla8776
    @basilabdalla8776 8 หลายเดือนก่อน +1

    Absolutely amazing 🥰

  • @hosseinmortazavi7903
    @hosseinmortazavi7903 หลายเดือนก่อน +1

    Thank you nice professor

  • @Amoeby
    @Amoeby 11 หลายเดือนก่อน

    For a general case of the integral of (x^m)(a + bx^n)^p where m, n and p are rational numbers and a and b are real numbers:
    1) if p is an integer then substitute x = t^(LCM of the denominators of m and n);
    2) if (m + 1)/n is integer then substitute a + bx^n = t^q where q is the denominator of p;
    3) if (m + 1)/n + p is an integer then substitute b + a/x^n = t^q where q is tge denominator of p.
    So after rewriting this integral in the binomial expression we get the integral from 0 to 3sqrt(3)/2 of (x^3)(9 + 4x^2)^(3/2)dx.
    m = 3, n = 2, p = -3/2.
    1) p is not an integer
    2) (m + 1)/n = (3 + 1)/2 = 2 is an integer so 9 + 4x^2 = t^2
    4xdx = tdt
    xdx = tdt/4
    x^2 = (t^2 - 9)/4
    x^3dx = t(t^2 - 9)dt/16
    x = 0 -> t = 3, x = 3sqrt(3)/2 -> t = 6.
    Finally, the integral from 0 to 3sqrt(3)/2 of (x^3)(9 + 4x^2)^(3/2)dx is equal to the integral from 3 to 6 of t(t^2 - 9)dt/(16t^3) = (1 - 9t^(-2))dt/16 = (t + 9/t)/16 where t goes from 3 to 6 so it equals to (6 + 9/6 - 3 - 9/3)/16 = 3/32.

  • @hosseinmortazavi7903
    @hosseinmortazavi7903 3 หลายเดือนก่อน

    Nice prof

  • @odumosuadeniyilukman
    @odumosuadeniyilukman ปีที่แล้ว +1

    Sir, I want to ask that condition will I find the value of the limits, or is it every time I have definite integrals, I will take their new value of u.
    Coz, I don't understand that.
    I just want to know the condition behind it.
    🙇

  • @AliHassan-hb1bn
    @AliHassan-hb1bn ปีที่แล้ว +1

    You could use integration by parts method

    • @tah_aki
      @tah_aki 10 หลายเดือนก่อน

      Yeah.. better to know them both as the question can be direct sometimes 😊

  • @holyshit922
    @holyshit922 ปีที่แล้ว

    We can factor from numerator derivative of the inside of denominator and we are left with x^2 whch can be expressed as function of sqrt(4x^2+9)
    so change of variable u=sqrt(4x^2+9) is good idea

  • @zenixthedark2676
    @zenixthedark2676 9 หลายเดือนก่อน

    When l Saw you l loved you teacher🇦🇿

  • @johnpaul4111
    @johnpaul4111 ปีที่แล้ว +1

    Bro. Super. Can contact you personally?

  • @pgray380
    @pgray380 10 หลายเดือนก่อน

    I get the same result without the x^3=x^2 * x trick. At one point I get [sqrt(u-9)]^3 in the numerator and sqrt(u-9) in the denominator. After cancellation left with [sqrt(u-9)]^2 which conveniently is just u-9.

  • @harshplayz31882
    @harshplayz31882 ปีที่แล้ว +1

    Its just 1st step game
    Aftee u know u have break x³ to x² and x.
    After it its easy

  • @قادممنالشرق-ظ5م
    @قادممنالشرق-ظ5م 10 หลายเดือนก่อน

    Thank you Ifrom Iraq f

  • @eliacoldwar-us9qr
    @eliacoldwar-us9qr ปีที่แล้ว +1

    Find d²y/dx² when y=square root of x/(x²+x)

  • @AshokKumar-ul6dg
    @AshokKumar-ul6dg 4 หลายเดือนก่อน +2

    ...