Calculus 3: Directional Derivatives and the Gradient Vector (Video #16) | Math with Professor V

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ม.ค. 2025

ความคิดเห็น • 22

  • @valeriereid2337
    @valeriereid2337 3 ปีที่แล้ว +7

    I highly recommend this to anyone looking for help with this level mathematics. Well explained, straightforward and super helpful.

  • @0.Abdulrahmannn
    @0.Abdulrahmannn ปีที่แล้ว

    This is the best mathematics channel for practical and theoretical explanations I've come across so far. This is a golden last-minute savior channel and a very effective, through-course-understanding alternative source. A very recommended and very lovely channel.

    • @mathwithprofessorv
      @mathwithprofessorv  ปีที่แล้ว

      Thank you sooooo much!!! ☺️☺️🫶🏻🫶🏻🫶🏻

  • @vashon100
    @vashon100 ปีที่แล้ว

    52:12 Confused....I can do the mechanics of grad f with these examples, but I am confused graphically how the grad f vector can be a normal vector to the surface and also a vector that gives greatest rate of increase/decrease for the surface? A normal vector is not also indicating surface rate of change. So it does one thing for some surf equations and another thing for other surf equations?

  • @aizarana8665
    @aizarana8665 3 ปีที่แล้ว +1

    same i will also highly recommend these lecs , thanks maam ...

  • @sphelelendiyaza7682
    @sphelelendiyaza7682 3 ปีที่แล้ว +1

    Your Videos Prof Are The Best

  • @omarbailey2369
    @omarbailey2369 ปีที่แล้ว

    Your videos always make it easy to understand. Thank you!

    • @mathwithprofessorv
      @mathwithprofessorv  ปีที่แล้ว

      Yay you’re so welcome!

    • @omarbailey2369
      @omarbailey2369 ปีที่แล้ว

      @@mathwithprofessorv question, do you do differential equations as well?

    • @mathwithprofessorv
      @mathwithprofessorv  ปีที่แล้ว +1

      The playlist is not complete but I have 13 videos so far:
      Differential Equations Video Lectures
      th-cam.com/play/PLl-Np5U6u5E5kGFz9LrlUy77fOgAKKSOt.html

  • @justintheballer3733
    @justintheballer3733 2 ปีที่แล้ว

    Could you explain at 14:18 why you did a^2+b^2=1

    • @berkaycosgun8901
      @berkaycosgun8901 7 หลายเดือนก่อน

      bro i wanted to reply after 1 year because I didn't understand either :D
      if u= you need unit vector normalization.
      u_hat=u/||u|| (u direction vector, u_hat same direction but magnitute 1 so unit vector)
      u_hat=()/(sqrt(a^2+b^2))
      definition of unit vector is "magnitute equal to 1" so a^2+b^2=1 (yes we dont need a and b exact value)
      if you go to 16:04 you can check v1 and v2 vectors magnitute are equal to 1
      (note: we loveeeee proffesor v💕💕)

  • @melihugurlu291
    @melihugurlu291 8 หลายเดือนก่อน

    41:24 I consider u unit vector as (cos(alpha), sin(alpha)), then I did dot product. To make this expression the biggest, I took derivative then I found that tan(theta)=3.2 This is different than your solution can u explain which one is true because my professor solved a different question in this way. Thank you.

  • @RahulChauhan-zz1nt
    @RahulChauhan-zz1nt 3 ปีที่แล้ว +1

    Best video

  • @samyount2546
    @samyount2546 ปีที่แล้ว

    At 57:00 could you explain how (25/2)k^2=1 I got 37/2k^2=1. (Awesome video btw)

  • @setsototitipana8433
    @setsototitipana8433 9 หลายเดือนก่อน

    When computing the directional derivatives, why do we use unit vectors not not just any vector that has the direction you want?

    • @ziadbinfars7188
      @ziadbinfars7188 2 หลายเดือนก่อน

      We don't want to alter the change rate of the gradient vector as any vector not a unit vector the magnitude of it ( the value regarding the direction ) is not 1 and if u multiplied any constant with any value but 1 u will eventually change the constant

  • @benudharasatapathy6625
    @benudharasatapathy6625 หลายเดือนก่อน

    Suppose
    Z=f( x(t), y(t) ) ,
    Then (dz/dt)=(dz/dx)(dx/dt)
    also (dz/dt)=(dz/dy)(dy/dt) ,
    is it correct ?

    • @benudharasatapathy6625
      @benudharasatapathy6625 หลายเดือนก่อน

      According to chain rule,
      (dz/dt)=(dz/dx)(dx/dt) + (dz/dy)(dy/dt) .
      I will be greatfull , on knowing that , why a '+' sign is in between them ,why they are being added ?