Principle Component Analysis (PCA) | Part 1 | Geometric Intuition

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 89

  • @aienthu2071
    @aienthu2071 ปีที่แล้ว +75

    So grateful for the videos that you make. I have burnt my pockets, spent hours on various courses just for the sake of effective learning. But most of the times I end up coming back at campusx videos. Thank you so much.

  • @henrystevens3993
    @henrystevens3993 2 ปีที่แล้ว +34

    Unbelievable...nobody taught me PCA like this.... Sir 5/5 for your teachings 🙏🙏 god bless you ❤️

    • @vikramraipure6366
      @vikramraipure6366 2 ปีที่แล้ว +1

      I am interested with you for group study, reply me bro

  • @prasadagalave9762
    @prasadagalave9762 8 หลายเดือนก่อน +13

    04:15 PCA is a feature extraction technique that reduces the curse of dimensionality in a dataset.
    08:30 PCA is a technique that transforms higher dimensional data to a lower dimensional data while preserving its essence.
    12:45 Feature selection involves choosing the most important features for predicting the output
    17:00 Feature selection is based on the spread of data on different axes
    21:15 PCA is a feature extraction technique that creates new features and selects a subset of them.
    25:30 PCA finds new coordinate axes to maximize variance
    29:45 Variance is a good measure to differentiate the spread between two data sets.
    33:54 Variance is important in PCA to maintain the relationship between data points when reducing dimensions.

  • @SumanPokhrel0
    @SumanPokhrel0 ปีที่แล้ว +5

    It's like im watching a NF series , at first you're introduced to different terms, methods their usecases and in the last 10 mins of the video everything adds up and you realize what ahd why these stratigies are in use. Amazing.

  • @rafibasha1840
    @rafibasha1840 3 ปีที่แล้ว +23

    You have done good research on every topic bro ,nice explanation ..I am so happy I found this channel at the same time feeling bad for not finding it earlier

  • @ug1880
    @ug1880 20 วันที่ผ่านมา +1

    Dude , your teaching is awesome...

  • @makhawar8423
    @makhawar8423 ปีที่แล้ว +2

    Can't have better understanding of PCA than this..Saved so much time and energy..Thanks a lot

  • @geetikagupta5
    @geetikagupta5 ปีที่แล้ว +7

    I am loving this channel more and more everytime I see a video here.The way content is presented and created is really awesome.Keep Inspiring and motivating us.I am learning a lot here.

  • @krishnakanthmacherla4431
    @krishnakanthmacherla4431 2 ปีที่แล้ว +4

    Wow , i regret why I did not get to this channel, very clear as a story , i can explain a 6 year old and make him/her understand ❤️👏

  • @kirtanmevada6141
    @kirtanmevada6141 11 หลายเดือนก่อน +1

    Totally an Awesome playlist for learning Data Science/Mining or for ML. Thank you so much sir! Means a lot!!

  • @prankurjoshi9672
    @prankurjoshi9672 ปีที่แล้ว

    No words to express how precious your teaching is....

  • @ParthivShah
    @ParthivShah 8 หลายเดือนก่อน +1

    Thank You Sir.

  • @nawarajbhujel8266
    @nawarajbhujel8266 10 หลายเดือนก่อน

    Top have this level of teaching, one should have deep level of understanding both from theoritcal as well as practical aspects. You have proved it again. Thank for providing such valuable teaching.

  • @eshandkt
    @eshandkt 3 ปีที่แล้ว +2

    one of the finest explanation of pca I have ever seen Thankyou Sir!

  • @SameerAli-nm8xn
    @SameerAli-nm8xn ปีที่แล้ว +2

    First of all the playlists is amazing you have done a really good job in explaining the concepts and intrusions behind the algorithms, I was wondering could you create a separate playlist for ARIMA SARIMAX and LSTM algorithms i really want to see those above algorithms in future class

  • @sidindian1982
    @sidindian1982 2 ปีที่แล้ว

    Sir , the way you explained the Curse of Dimensionality & its Solutions in Previous vedio -- Just mind blowing ..... YOU ARE GOD

  • @narmadaa2106
    @narmadaa2106 ปีที่แล้ว

    Excellent sir
    I have listened to different video lectures on PCA,
    But i didn't understand it properly.
    But your's is the best one.
    Thank you so much

  • @fahadmehfooz6970
    @fahadmehfooz6970 2 ปีที่แล้ว

    Never have I seen a better explanation of PCA than this!

  • @avinashpant9860
    @avinashpant9860 2 ปีที่แล้ว +1

    Awesome explanation and best part is how he drops important info in between the topic, like such a good interpretation of scatter plot is in this video which i wouldn't find even in dedicated scatter plot video. So perfect.

  • @zaedgtr6910
    @zaedgtr6910 ปีที่แล้ว

    Amazing explanation....NO one can explain pca as easily as you have done. Better than IIT professors.

  • @rahulkumarram5237
    @rahulkumarram5237 ปีที่แล้ว +1

    Beautifully explained !!! Probably the best analogy one could come up with. Thank you, sir.

  • @jawadali1753
    @jawadali1753 2 ปีที่แล้ว +3

    your teaching style is amazing , you are gem

    • @vikramraipure6366
      @vikramraipure6366 2 ปีที่แล้ว

      I am interested with you for group study, reply me bro

  • @shubhankarsharma2221
    @shubhankarsharma2221 ปีที่แล้ว

    Very nicely explained topics. One of the best teacher on ML.

  • @raghavsinghal22
    @raghavsinghal22 2 ปีที่แล้ว +1

    Best Video for PCA. I'll definitely recommend to my friends 🙂

  • @balrajprajesh6473
    @balrajprajesh6473 2 ปีที่แล้ว

    I thank God for blessing me with this teacher.

  • @hrithik7784
    @hrithik7784 29 วันที่ผ่านมา

    YOU ARE THE BEST TEACHER

  • @motivatigyan6417
    @motivatigyan6417 ปีที่แล้ว

    U r outstanding for me sir...i can't able to understand untill i watch your video

  • @DataScienceSchools
    @DataScienceSchools 2 ปีที่แล้ว

    Wow, how simply you did it.

  • @manrajcheema3418
    @manrajcheema3418 2 หลายเดือนก่อน +1

    bro explained what my professors couldn't do in a week in just 25 minutes

  • @pkr1kajdjasdljskjdjsadjlaskdja
    @pkr1kajdjasdljskjdjsadjlaskdja 9 หลายเดือนก่อน +1

    bhai ye video viral kiyu nahi ho raha hai ..thank you sir ❤

  • @sachinahankari
    @sachinahankari 8 หลายเดือนก่อน +1

    Variance of grocery shop is greater than number of rooms but you have shown reverse..

  • @Ishant875
    @Ishant875 10 หลายเดือนก่อน

    I have a doubt, If a variable is in range 0 to 1 and another variable is in range 0 to 1000(will have more variance / spread ). Why choosing 2nd variable just by looking at variance make sense? It may be matter of units like in km and cm. For this problem we use scaling. Am I right?

  • @amanrajdas4540
    @amanrajdas4540 2 ปีที่แล้ว +1

    sir your videos are really amazing, I had learned a lot from your videos. But I have a doubt in feature construction and feature extraction. They both are looking similar. So can you please ,tell me the one major difference between these two.

    • @vikramraipure6366
      @vikramraipure6366 2 ปีที่แล้ว

      I am interested with you for group study, reply me bro

  • @beautyisinmind2163
    @beautyisinmind2163 ปีที่แล้ว

    Damn, you are the Messiah in ML teaching

  • @ritesh_b
    @ritesh_b 2 ปีที่แล้ว

    thanks for the great explaination please keep explaining in this way only

  • @1234manasm
    @1234manasm 2 ปีที่แล้ว

    Very nice explanation my i know which hardware you use to write on the notepad?

  • @kindaeasy9797
    @kindaeasy9797 10 หลายเดือนก่อน

    but agar PCA ke geometric intuition mai mai clockwise ghumau axis ko toh variance toh rooms ka kam ho jaega na , or agar mai same process kru by taking washroomn on x axis and rooms on y tab toh washroom select ho jaega na ??

  • @JayaYadav-q1i
    @JayaYadav-q1i ปีที่แล้ว

    You are so good in this, i m like 'tbse kha thae aap'

  • @beb57swatimohapatra21
    @beb57swatimohapatra21 ปีที่แล้ว

    Best course for ML

  • @rafibasha4145
    @rafibasha4145 2 ปีที่แล้ว +1

    Hi Bro,please make videos on feature selection techniques

  • @x2diaries506
    @x2diaries506 2 ปีที่แล้ว

    Dear sir I am confused about the variance formula and your interpretation. Kindly recheck.

  • @ambarkumar7805
    @ambarkumar7805 2 ปีที่แล้ว

    what is the difference between feature extraction and feature contruction as both are reducing the no of features?

  • @mustafachenine7942
    @mustafachenine7942 2 ปีที่แล้ว

    Is it possible to have an example of pictures to classify them into two categories?
    If the dimensions are reduced in pca and classification in knn is better , please

  • @harsh2014
    @harsh2014 ปีที่แล้ว

    Thanks for the explanations!

  • @DeathBlade007
    @DeathBlade007 2 ปีที่แล้ว

    Amazing Explanation

  • @ytg6663
    @ytg6663 3 ปีที่แล้ว

    बहुत सुंदर है👍👍🙏❤️🔥

  • @msgupta07
    @msgupta07 2 ปีที่แล้ว

    Amazing explanation... Can you share this one note for windows 10 notes of this entire series "100 days of Machine Learning"

  • @aadirawat4230
    @aadirawat4230 2 ปีที่แล้ว

    Such an underrated channel for ML.

  • @AyushPatel
    @AyushPatel 3 ปีที่แล้ว +1

    sir i just wanted to ask that can we write our own machine learning algorithms instead of using sklearn and tensorflow i mean from scratch plz make a video about that. I have been following you whole series. Sir do reply. Thanks to your efforts

    • @ytg6663
      @ytg6663 3 ปีที่แล้ว

      Ha Likhsaktr ho yaar...
      Yes you can...

    • @vikramraipure6366
      @vikramraipure6366 2 ปีที่แล้ว

      I am interested with you for group study, reply me bro

    • @AyushPatel
      @AyushPatel 2 ปีที่แล้ว

      @@vikramraipure6366 actually currently i am working on some other project so.. i am sorry..
      thanks for the proposal!

    • @yashwanthyash1382
      @yashwanthyash1382 ปีที่แล้ว

      My suggestion is use sklearn library for existed algorithms. If that doesn't work create your own algorithm.

  • @VIP-ol6so
    @VIP-ol6so 7 หลายเดือนก่อน

    great example

  • @761rishabh
    @761rishabh 3 ปีที่แล้ว +1

    Nice Presentation sir

  • @siddiqkawser2153
    @siddiqkawser2153 4 หลายเดือนก่อน

    U rock dude! Really appreciate that

  • @mukeshkumaryadav350
    @mukeshkumaryadav350 2 ปีที่แล้ว

    amazing explanation

  • @sahilkirti1234
    @sahilkirti1234 7 หลายเดือนก่อน

    04:15 PCA is a feature extraction technique that reduces the curse of dimensionality in a dataset.
    08:30 PCA is a technique that transforms higher dimensional data to a lower dimensional data while preserving its essence.
    12:45 Feature selection involves choosing the most important features for predicting the output
    17:00 Feature selection is based on the spread of data on different axes
    21:15 PCA is a feature extraction technique that creates new features and selects a subset of them.
    25:30 PCA finds new coordinate axes to maximize variance
    29:45 Variance is a good measure to differentiate the spread between two data sets.
    33:54 Variance is important in PCA to maintain the relationship between data points when reducing dimensions.
    Crafted by Merlin AI.

  • @armanmehdikazmi5390
    @armanmehdikazmi5390 11 หลายเดือนก่อน

    hats off to you sirrrr

  • @jazz5314
    @jazz5314 2 ปีที่แล้ว

    Wowww!!!! Best video

  • @devnayyar9536
    @devnayyar9536 2 ปีที่แล้ว

    Sir notes milege app ki

  • @sahilkirti1234
    @sahilkirti1234 7 หลายเดือนก่อน

    you are the god

  • @arpitchampuriya9535
    @arpitchampuriya9535 2 ปีที่แล้ว

    Excellent

  • @ayushtulsyan4695
    @ayushtulsyan4695 ปีที่แล้ว

    Bhai ek playlist dedo for statistical application in Data Science

  • @jiteshsingh6030
    @jiteshsingh6030 2 ปีที่แล้ว

    Just Wow 🔥 😍

  • @shivendrarajput4413
    @shivendrarajput4413 5 หลายเดือนก่อน

    that is what we do

  • @pankajbhatt8315
    @pankajbhatt8315 2 ปีที่แล้ว

    Amazing explanation!!

  • @qaiserali6773
    @qaiserali6773 2 ปีที่แล้ว

    Great content!!!

  • @surajghogare8931
    @surajghogare8931 2 ปีที่แล้ว

    Cleaver explaination

  • @yashjain6372
    @yashjain6372 ปีที่แล้ว

    best explanation

  • @0Fallen0
    @0Fallen0 2 ปีที่แล้ว

    24:24 Aha! So PCA finds an alternate co-ordiante system and uses the change of basis matrix to transform the data.

  • @soyam7
    @soyam7 2 หลายเดือนก่อน

    when god decided to go on earth and teach some ml concept to people , that was the same day when this man was born

  • @murumathi4307
    @murumathi4307 3 ปีที่แล้ว

    This work same SVM? 🤔

  • @learnfromIITguy
    @learnfromIITguy ปีที่แล้ว

    solid

  • @arshad1781
    @arshad1781 3 ปีที่แล้ว

    thanks

  • @namansethi1767
    @namansethi1767 2 ปีที่แล้ว

    Thanks you sir

    • @vikramraipure6366
      @vikramraipure6366 2 ปีที่แล้ว

      I am interested with you for group study, reply me bro

    • @namansethi1767
      @namansethi1767 2 ปีที่แล้ว

      Done....Give me your mobile no.
      ..... I will call i when I free

  • @Star-xk5jp
    @Star-xk5jp 10 หลายเดือนก่อน

    Day3:
    Date:11/1/24

  • @vatsalshingala3225
    @vatsalshingala3225 ปีที่แล้ว

    ❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @Garrick645
    @Garrick645 หลายเดือนก่อน

    1:05 Jab tak toh India bus aajad hi huya tha videsh me PCA ban chuka tha aur ☠