3.3.2 Householder transform, part 3

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024
  • Advanced Linear Algebra: Foundations to Frontiers
    Robert van de Geijn and Maggie Myers
    For more information: ulaff.net

ความคิดเห็น • 12

  • @EngSeifHabashy
    @EngSeifHabashy 3 หลายเดือนก่อน

    I love how simple, straight to the point, short his explanaition
    Thank you sir!

  • @realnameverified416
    @realnameverified416 2 หลายเดือนก่อน

    Splendid! I wish I could like the video more than once!

  • @oronimbus
    @oronimbus 3 ปีที่แล้ว +10

    the geometric interpretations are very useful! thank you

  • @Unknownfor13
    @Unknownfor13 10 วันที่ผ่านมา

    explain it very well!!!

  • @engineeringoyster6243
    @engineeringoyster6243 3 ปีที่แล้ว +3

    Thanks for the video.
    After a 40 year career as a flight dynamics engineer at a major manufacturer of jetliners, I have under taken as a hobby to manually calculate the eigenvalues and eigenvectors of a flight dynamics problem. When I was working, I would just fire up MatLab and use eig.
    One detail that has tripped me up as I've studyed this is that the folks in linear algebra who use the term "reflection" really mean "refraction." I say this because the vector doesn't reflect off of the plane but refracts thru the plane.

    • @knufyeinundzwanzig2004
      @knufyeinundzwanzig2004 3 หลายเดือนก่อน

      is a refraction like this even possible? I think reflection makes more sense as it is referring to the mirror image

  • @jakobjonsson1474
    @jakobjonsson1474 ปีที่แล้ว +2

    This is very beautiful! Thank you for the clear and understandable explanation!
    /Jakob Jonsson

  • @Unknownfor13
    @Unknownfor13 10 วันที่ผ่านมา

    Thanks sir

  • @yb801
    @yb801 3 ปีที่แล้ว +3

    thanks, really helpful, now i now why we need to do qr decomposition this way, instead of just use the formula without knowing why.

  • @filipzet4120
    @filipzet4120 4 ปีที่แล้ว +3

    thank You!

  • @rav2n
    @rav2n หลายเดือนก่อน

    if one knows the 2.norm of x and the standard basis e, then beta e directly gives the required mirror vector along e right. Then why do we need to represent the "mirror" operation as a matrix in terms of u in the first place?