Continuous and Uniformly Continuous Functions

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024

ความคิดเห็น • 136

  • @pseudorealityisreal
    @pseudorealityisreal 3 ปีที่แล้ว +45

    Whaaaat!!!!??? 5 minutes is all it took for you to clarify a concept I was trying to figure out for months 😂...Excellent!

  • @dongookson3755
    @dongookson3755 4 ปีที่แล้ว +5

    Man the last 20 seconds...cannot thank you enough. God’s work.

  • @dk5943
    @dk5943 ปีที่แล้ว +2

    Its CRAZY how someone on yt can explain a concept much more efficiently. I am a math major in the first semester and I am rlly struggeling to understand concepts when professors explain it, or its just hatd for me to understand stuff in the lecture, even worse when friends try to explain it to me… as they are trying to confidently teach me, (the themselves haven’t understood it good enough) I then feel very stupid.
    But I know it mostly depends on their explanation… so thank you!!!

  • @JTehAnonymous
    @JTehAnonymous 10 ปีที่แล้ว +51

    That explanation was so clear. thank you very much.

  • @pankajaggrawal7762
    @pankajaggrawal7762 3 ปีที่แล้ว +3

    Great animation and explanation. It is first time, when I could understand uniform continuity geometrically.

  • @Whitecroc
    @Whitecroc 10 ปีที่แล้ว +8

    Thank you. This has bothered me for years. The definition is so abstract and features so many moving parts I was never quite sure if I got it.

  • @Stuk4s
    @Stuk4s 5 ปีที่แล้ว +2

    I struggled for 1 week trying to understand continuity. Now finally thanks to you i understood!

  • @danielyang6826
    @danielyang6826 7 ปีที่แล้ว +1

    The graphical explanation cleared up all confusion I had about the definitions. Thank you.

  • @annikabrundyn8441
    @annikabrundyn8441 9 ปีที่แล้ว +57

    Amazing! Thank you! There aren't enough good videos on Real Analysis :)

    • @josuke6869
      @josuke6869 6 ปีที่แล้ว

      Do you know any good ones

    • @IStMl
      @IStMl 4 ปีที่แล้ว +1

      @@josuke6869 I know some if u still need: th-cam.com/video/dQw4w9WgXcQ/w-d-xo.html

    • @Mryeo5354
      @Mryeo5354 4 ปีที่แล้ว +3

      @@IStMl my disappointment is immeasurable and my day is ruined

    • @brilliazz
      @brilliazz 4 ปีที่แล้ว

      @@Mryeo5354 come on it was a joke or just to inspire you

    • @lluccanela3042
      @lluccanela3042 4 ปีที่แล้ว +1

      @@IStMl Don't know if you're still alive but thank you. I needed those :)

  • @znhait
    @znhait 10 ปีที่แล้ว

    This is the best explanation I have seen explaining the difference between continuity and uniform continuity. Unfortunately, the main thing with these problems is how difficult they are to actually prove.

  • @kiwanoish
    @kiwanoish 5 ปีที่แล้ว +1

    Very nice video, and a very clear and concise explanation! Note though: Starting at 2:50 it says at the top right: "If a given \delta works for any \epsilon we choose, for any points in the domain". This might be a slightly confusing formulation, since it's more like: For a given \epsilon, we can find a \delta that works for any points in the domain. We cannot find a \delta that works for any \epsilon. But, again, you explained it perfectly, and hopefully people who watch the video will get the right idea anyways. Thank you!

  • @viveakkatochG
    @viveakkatochG 3 ปีที่แล้ว +2

    Hands down the best explanation on this topic . 💯🕺

  • @magno5157
    @magno5157 3 ปีที่แล้ว +9

    For the uniformly continuous counter-example, it would be nicer if you kept both the epsilon and delta fixed and moved the blue region closer to the y-axis and picked two points on the curve that are in the blue region but are clearly not entirely in the red region.

  • @icee562
    @icee562 4 ปีที่แล้ว +1

    You saved me a weeks worth of frustration my friend. Bless you!

  • @michaelkisumu2420
    @michaelkisumu2420 7 ปีที่แล้ว +1

    Awesome Video! Very clear explanation of the use of Delta-Epsilon in the context of uniform continuity, and the counter example added even more clarity

  • @noahz.2054
    @noahz.2054 8 ปีที่แล้ว +1

    Great examples and visuals. Very concise and no rambling

  • @farukahmed3179
    @farukahmed3179 4 ปีที่แล้ว

    This video has makes my understanding better of continuity. Very good video that's makes everyone impressed.

  • @Ke_eK
    @Ke_eK ปีที่แล้ว

    Before finishing wathcing this video I didn't believe that this short 5 min video could actually help me but I was soooo wrong. Thank you so much.

  • @AlpstoonE
    @AlpstoonE 11 ปีที่แล้ว +2

    Great explenation! Really helpful for my upcoming calculus exam!

  • @ridge9451
    @ridge9451 6 ปีที่แล้ว +1

    This video was very well-done and very helpful. Thank you for your hard work on this.

  •  9 ปีที่แล้ว +9

    Thank you. You helped me. Nice explanation and nice visuals. :)

  • @pykeselslayer
    @pykeselslayer 4 ปีที่แล้ว

    After about 3 hours of nothing, I finally understand, thanks

  • @Runako1653
    @Runako1653 11 ปีที่แล้ว +3

    Thanks for explaining dont know why lecturers make it so hard to understand

  • @angelsofthemafia
    @angelsofthemafia 10 ปีที่แล้ว +1

    Great explanation, thank you. But I have a doubt: In function 1/x if we take interval [0.5,1] then we could apply Heine's Theorem because the function is continous in [0.5,1]. But then the function would be uniformly continous within [0.5,1]. However how is it possible if it is not uniformly continous?

    • @reinholdwillcox1273
      @reinholdwillcox1273 10 ปีที่แล้ว +2

      The function is uniformly continuous on [.5,1]. If you extend your interval to (0,1], or (0, anything], that's when you lose uniform continuity.

    • @komalgiriup
      @komalgiriup 7 ปีที่แล้ว +1

      Emsie emstraba this function is uniformly continues only in a certain interval but if talk about whole real lime then function is not uniformly continues

  • @drvanon
    @drvanon 5 ปีที่แล้ว +2

    That was an amazing explanation. Thank you so much!

  • @mahimaverma5891
    @mahimaverma5891 8 ปีที่แล้ว

    Thank you so much. you explained it very Nicely in a crisp and concise manner.

  • @Whitecroc
    @Whitecroc 10 ปีที่แล้ว

    Just to double-check -- uniform continuity is informally verified by checking that for a given pair of points (x,y) it is true that |x - y| < delta => |f(x) - f(y)| < epsilon, correct? I spent years thinking it was the other way around (), and couldn't figure out why my verifications never added up.

  • @jimothy221
    @jimothy221 4 ปีที่แล้ว +1

    Great explanation! It's a shame you don't upload any more videos!!!

  • @Medvich
    @Medvich 8 ปีที่แล้ว

    But if you choose the delta appearing at 4.27 the definition still holds true: you'll have values within epsilon for all other (x,y) throughout 1/x on the right that point if you look at the graph, for example where you defined your former delta

  • @vinay9755
    @vinay9755 3 ปีที่แล้ว

    🙏🙏🙏🙏😊😊😊 thanks sir for making me visualise through graphical meaning about continuity and uniform continuity.🙋🙋👌👌

  • @Artus506
    @Artus506 12 ปีที่แล้ว +1

    Thanks...it made it a lot clearer for me.

  • @umanicole9857
    @umanicole9857 9 ปีที่แล้ว +15

    Direct me to your altar. You saved my little U-grad life. Amen. 😎

  • @mohammadtouseef1097
    @mohammadtouseef1097 4 ปีที่แล้ว

    There is something missing here, because f(x) =1/x is uniformly continuous for all x>1.Then how you're gonna fix the epsilon such that the corresponding delta will work for the whole domain.Because we know by video animation that it won't work

  • @alekseyklintsevich4601
    @alekseyklintsevich4601 9 ปีที่แล้ว

    Best explanation that I have seen

  • @anamaykane9355
    @anamaykane9355 7 ปีที่แล้ว

    So, can we say that if the slope of a function is bounded below a certain value, then the function is uniformly continuous?

  • @napathkraivisitkul5226
    @napathkraivisitkul5226 4 ปีที่แล้ว

    Thank you the visual explanation was so clear

  • @ThePlbenj
    @ThePlbenj 12 ปีที่แล้ว

    In the last statement, that the function f(x)=1/x, what gurantees us that indeed, there is no delta we can find in the second points that you've mentioned?

  • @jejo63660
    @jejo63660 10 ปีที่แล้ว

    So im guessing that its true then that no exponential function will be uniformly continuous? Or any line that has a curvature?

  • @for-the-love-of-maths
    @for-the-love-of-maths 6 ปีที่แล้ว

    This is how to teach real analysis.....
    Anyone can solve question but the real task is to understand the hidden geometry..... 😀😀😀👐👐👐👐🙏🙏

    • @ericgilkey3549
      @ericgilkey3549 5 ปีที่แล้ว

      I think there are more people who understand the concept, but can't write a proper epsilon-delta proof than vice versa. But I do think videos like these are helpful.

  • @Ha-ppi-ness
    @Ha-ppi-ness 6 ปีที่แล้ว

    Awesome intuitive explanation. And brief. Thanks!!!

  • @nadoo4137
    @nadoo4137 6 ปีที่แล้ว

    Very clear when showing it with graphs!

  • @divyabansal2056
    @divyabansal2056 4 ปีที่แล้ว

    Thats the best explanation 👌🙌

  • @蔡小宣-l8e
    @蔡小宣-l8e 2 ปีที่แล้ว

    Thanks a million! 十分感谢!

  • @kanikarajain4842
    @kanikarajain4842 7 ปีที่แล้ว +3

    little bit confusion is there ....didnt understand dat which one we hav to choose first epsilon ...delta ??

  • @harry1314521
    @harry1314521 12 ปีที่แล้ว

    This is AWESOME! It helps me to understand totally!

  • @rmutatina
    @rmutatina 12 ปีที่แล้ว

    how come this is in AUTO & VEHICLES category?

  • @anshumayadav9274
    @anshumayadav9274 6 ปีที่แล้ว

    The concept is Seriously now understood by me. Thanks for uploading this video. It would be more better if you sound a bit slow. :') Thanks Ya!

  • @rosishkatuwal5677
    @rosishkatuwal5677 5 ปีที่แล้ว +1

    Thanks for the video...😍😍😍

  • @dcblunt666
    @dcblunt666 10 ปีที่แล้ว

    Thank you for the video. A nice little refresher!

  • @kidbuu8025
    @kidbuu8025 8 ปีที่แล้ว

    This one is really good, would be better if there are some example, theorems and application, could be a great lecture.

  • @adrian2266adrian2266
    @adrian2266adrian2266 8 ปีที่แล้ว +1

    Thanks. This video indeed helped me.

  • @aronhegedus
    @aronhegedus 8 ปีที่แล้ว +2

    very nice visualisation

  • @jamesrobertson9149
    @jamesrobertson9149 4 ปีที่แล้ว

    very good visuals and animations

  • @jugglingisgreat
    @jugglingisgreat 8 ปีที่แล้ว +1

    Excellent work. Thanks.

  • @Anthro12011fall
    @Anthro12011fall 11 ปีที่แล้ว

    This clarifies everything!

  • @estebanlopez1701
    @estebanlopez1701 5 ปีที่แล้ว

    This is excellent, thank you, sir

  • @xrhsthsuserxrhsths
    @xrhsthsuserxrhsths 12 ปีที่แล้ว

    i cant thank you enough for this vid....i can only say i am pleased

  • @AbhishekSingh_023
    @AbhishekSingh_023 2 ปีที่แล้ว

    Great explanation!!!

  • @rickjohnson247
    @rickjohnson247 5 ปีที่แล้ว

    Ur my fucking hero. Thx for saving me many hours for analysis class.

  • @ToasterMagic
    @ToasterMagic 12 ปีที่แล้ว +3

    THANKS MAN
    I AM FORM TAIWAN

    • @lluccanela3042
      @lluccanela3042 4 ปีที่แล้ว

      @@js7564 You mean western Taiwan?

  • @DiegoMathemagician
    @DiegoMathemagician 4 ปีที่แล้ว

    I don't get one thing, the definition says: "For every epsilon there exists a delta...", not "there exists a delta such that for every epsilon..."

    • @pmcate2
      @pmcate2 4 ปีที่แล้ว

      Diego Mathemagician first you choose an arbitrary epsilon.

  • @shivangi3030
    @shivangi3030 5 ปีที่แล้ว

    Thanks sir you explained in really well

  • @chayanmitra8146
    @chayanmitra8146 7 ปีที่แล้ว

    Where's the rest of the video?

  • @farhanfarooqui
    @farhanfarooqui 7 ปีที่แล้ว

    No more videos?

  • @vr2495
    @vr2495 5 ปีที่แล้ว

    Very good video, thank you so much

  • @shubhankarnikhil5732
    @shubhankarnikhil5732 5 ปีที่แล้ว

    Thanks for such clear explanation :)

  • @robin22061993
    @robin22061993 12 ปีที่แล้ว

    Thank you! Very clear explanation

  • @leoMoctezuma9876543
    @leoMoctezuma9876543 9 ปีที่แล้ว

    thank you very much!! very good explanation

  • @alexter-sarkisov8321
    @alexter-sarkisov8321 10 ปีที่แล้ว

    Great explanation, thanks!

  • @medbob2498
    @medbob2498 5 ปีที่แล้ว

    in the last exampl the delta will have to tend to 0 when we get closer and closer to the X axis and there is where we have the contradiction

  • @abcdef2069
    @abcdef2069 7 ปีที่แล้ว +1

    how about f(x) = x^2, I never understood this kind of math logic. there is no delta for all the points in x^2. each delta makes each epsilon ^2, delta must become smaller the further right you go. i think mathematicians created this epsilon and delta things to mock us.
    this video has a good visual representstion than others, i probably made one step closer to get to know the delta and epsilon thing.

  • @chiefs312001
    @chiefs312001 10 ปีที่แล้ว

    oh man this is helpful. thanks dude.

  • @edmel144
    @edmel144 4 ปีที่แล้ว +1

    So i) continuous means one of the points is fixed, and this works when you consider each point in the domain in turn as a fixed point (the maximum delta can be different for each point), ii) uniformally continuous means there is a single maximum value of fixed delta for which point i) is true. So ii) is a stronger condition.

    • @DarinBrownSJDCMath
      @DarinBrownSJDCMath 4 ปีที่แล้ว +1

      That's correct. Uniform continuity is stronger. (1) Continuity means "for all epsilon, for all x, there exists delta(epsilon, x) such that for all x_0, d(x_0, x) < delta ==> d(f(x_0), f(x)) < epsilon" (2) Uniform continuity means "for all epsilon, there exists delta(epsilon), such that for all x and for all x_0, d(x_0, x) < delta ==> d(f(x_0), f(x)) < epsilon". Notice the difference between the two is that the quantifiers "for all x" and "there exists delta" have been switched. This means that in the definition of continuity, delta is a function of both epsilon and x, whereas in the definition of uniform continuity, delta is only a function of epsilon alone. So, every uniformly continuous function is continuous, because to find delta(epsilon, x), you can just take the delta(epsilon) guaranteed by the definition of uniform continuity.

  • @pkaypkay205
    @pkaypkay205 2 ปีที่แล้ว +1

    Outstanding

  • @supercrazpianomanaic
    @supercrazpianomanaic 7 ปีที่แล้ว

    Great explanation!

  • @ArtisticContingent
    @ArtisticContingent 8 ปีที่แล้ว +1

    Really helpful, thank you :)

  • @ASW1430
    @ASW1430 10 ปีที่แล้ว

    Thx alot, makes it very clear

  • @k.munusamy-6838
    @k.munusamy-6838 5 ปีที่แล้ว

    good explanation.thank u so much

  • @supermarcio_
    @supermarcio_ 11 ปีที่แล้ว

    Woah. Thankful for days!

  • @gnapari1130
    @gnapari1130 4 ปีที่แล้ว

    Thank you ❤❤❤

  • @zanezak878
    @zanezak878 8 ปีที่แล้ว +1

    Great Video!

  • @pi_academy_manipur
    @pi_academy_manipur 4 ปีที่แล้ว

    The best of all

  • @BlumChoi
    @BlumChoi 5 ปีที่แล้ว

    You sir, are amazing

  • @thekopian
    @thekopian 11 ปีที่แล้ว

    yeah that was awesome ... amazing explanation

  • @mehdielnino4096
    @mehdielnino4096 7 ปีที่แล้ว

    Very clear thanks

  • @nainamat6861
    @nainamat6861 3 ปีที่แล้ว

    THAANK YOU SO MUCH SIR !!!

  • @babyloniaw8247
    @babyloniaw8247 8 ปีที่แล้ว +1

    Thank you.

  • @maria-mu5ht
    @maria-mu5ht 3 ปีที่แล้ว

    thank you............. so much...........

  • @ASDDlojio
    @ASDDlojio 6 ปีที่แล้ว

    LIFE SAVER

  • @syifaiamacure3481
    @syifaiamacure3481 10 ปีที่แล้ว

    Thank you so much :)

  • @InstantlyFail
    @InstantlyFail 10 ปีที่แล้ว

    Thanks, I understand

  • @daogiang2582
    @daogiang2582 4 ปีที่แล้ว

    Thanks!

  • @carlosraventosprieto2065
    @carlosraventosprieto2065 ปีที่แล้ว

    Thanks man

  • @-NikoLee
    @-NikoLee 8 ปีที่แล้ว

    very helpfull thanks :-)

  • @minexe
    @minexe 2 ปีที่แล้ว

    very clear

  • @katherineholyfield6485
    @katherineholyfield6485 10 ปีที่แล้ว

    Thank you

  • @garcezvanessa
    @garcezvanessa 9 ปีที่แล้ว

    thank you!

  • @Hayleeyyo
    @Hayleeyyo 10 ปีที่แล้ว

    well explained

  • @lenysd1263
    @lenysd1263 2 หลายเดือนก่อน

    Great❤

  • @wooprime3482
    @wooprime3482 8 ปีที่แล้ว

    Thx alot.