The Cauchy Integral Formula

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ม.ค. 2025

ความคิดเห็น • 23

  • @morganadutra8918
    @morganadutra8918 6 ปีที่แล้ว +13

    I'm so happy I found this channel. Your job is awesome, Michael. Really helped me, thank you!

  • @cosmickitty9533
    @cosmickitty9533 7 ปีที่แล้ว +7

    Finally a decent video on this topic. I have been through SO MANY shitty ones. Its not even that fucking hard but people make it seem soooooo hard by giving vague, half explanations and proofs. I don't want a proof i want an example!!!! Thank you so much

  • @BronxGrrlX
    @BronxGrrlX 5 ปีที่แล้ว +2

    Excellent explanation, and the trampoline example really helps clarify the concept that once you know what is happening on the boundary of an analytic function f(z), you also know everything that is happening inside the function within the region C. That is mind blowing. The boundary contains all the information of the function! Cool. Thank you, Michael Barrus!

  • @karunanarang9119
    @karunanarang9119 7 ปีที่แล้ว +2

    Appreciate how easy and simple you make complex analysis!

  • @caribbeankpoplover
    @caribbeankpoplover 7 ปีที่แล้ว +15

    Wow didn’t know it was that easy! 😄

  • @afeezolalekan2011
    @afeezolalekan2011 3 ปีที่แล้ว

    Wow!!! this is amazing. Thanks Michael

  • @457azazazaz
    @457azazazaz 7 ปีที่แล้ว +4

    Really enjoyed it, thank you.

  • @taracat862
    @taracat862 6 ปีที่แล้ว +3

    Very clear, thank you!

  • @DarkSlayerphlc
    @DarkSlayerphlc 5 ปีที่แล้ว +1

    Thanks Professor!!!!!!!!!!!!

  • @davidjohnson-my6sr
    @davidjohnson-my6sr 7 ปีที่แล้ว

    For 10:02, on the LHS with the second integrand, could we also do a substitution z |----> z-1 to make the denominator have a singularity at -1 and apply the Cauchys Integral Formula much like for the first integral?

  • @Tomas-mv7qs
    @Tomas-mv7qs 8 หลายเดือนก่อน

    Thank you!

  • @jonathanpuigvert7468
    @jonathanpuigvert7468 3 ปีที่แล้ว

    Does anybody know which textbook he was using or this course? His lectures are amazing Professor Michael Barrus.

  • @pawpatrol55
    @pawpatrol55 ปีที่แล้ว

    how do you know how many times to differentiate

  • @davidhiguera3338
    @davidhiguera3338 8 ปีที่แล้ว

    Great video, thanks!

  • @Madhuri20201
    @Madhuri20201 4 ปีที่แล้ว

    Sir u are really awesome... Great teaching...bt I hv only one doubt sir, that how do paramerise all types of curves?? I'm unable to find paramerzation of curves..pls tell me

  • @Mehdiranjb
    @Mehdiranjb 7 หลายเดือนก่อน

    🙏🙏

  • @adrianbueno2763
    @adrianbueno2763 7 ปีที่แล้ว +1

    Gracias

  • @sherzadakhan3191
    @sherzadakhan3191 5 ปีที่แล้ว

    why do f(z) must be analytic inside a closed curve for Cauchy integral theorem. the integral is taken along the path not inside then why points inside curve matter. an intuitive explanation plz .

    • @pivasmilos
      @pivasmilos 5 ปีที่แล้ว

      Because it is derived from the Cauchy-Goursat theorem and CG requires f(z) to be everywhere analytic in a simply connected domain.
      I.e. you can't prove Cauchy's integral formula without f(z) being analytic in a simply connected domain.

  • @ahmadsaeed8492
    @ahmadsaeed8492 7 ปีที่แล้ว

    Mujy ya pouchna tha k mod k andar jo value di hoti hai us sy diagarm kasy draw karne hai or agr factorize kar k 2 values aye hain un my sy kis ko z0 banana hai or kis ko f(z) boly gain...

  • @djamelbekiri3903
    @djamelbekiri3903 4 ปีที่แล้ว

    On besoin explications sur formule de Cauchy pompeiu

  • @bearatwork
    @bearatwork 8 ปีที่แล้ว

    Tq sir