They won't teach you this INSANE derivative

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ม.ค. 2025

ความคิดเห็น • 37

  • @BorisNVM
    @BorisNVM 10 หลายเดือนก่อน +40

    we use these in physics in a lot of stuff, the typical example is the operator momentum p = (-ih/2π) d/dx in quantum mechanics. The translation operator we define roughly T(a)= exp(iap)

    • @sigmainclination9483
      @sigmainclination9483 10 หลายเดือนก่อน +1

      th-cam.com/video/LlSHsqJHD0o/w-d-xo.htmlsi=jat3Ag06jtAFRCdj

    • @knivesoutcatchdamouse2137
      @knivesoutcatchdamouse2137 10 หลายเดือนก่อน +1

      What is the 'a' in this context?

    • @BorisNVM
      @BorisNVM 10 หลายเดือนก่อน

      @@knivesoutcatchdamouse2137 I use "a" to describe the distance of translation, e.g. if ψ(x) is the wave function (usually L² integrable) the translation is T(a)ψ(x) = ψ(x+a). I think.

    • @knivesoutcatchdamouse2137
      @knivesoutcatchdamouse2137 10 หลายเดือนก่อน +1

      Okay, thanks. I assumed it was translation but wasn't sure! I really wish I knew more about the physics of quantum mechanics.

    • @BorisNVM
      @BorisNVM 10 หลายเดือนก่อน +1

      @@knivesoutcatchdamouse2137 I started studying Quantum Mechanics from online courses and Zettilli's book. Maybe you can start there as well :)

  • @CM63_France
    @CM63_France 10 หลายเดือนก่อน +1

    Hi,
    The first time I saw that was in automatic. We define the Heaviside symbol s to be equal to d / dt . And the derivative of a function f(t) is given by s multiplied by f(t).
    And we derived easily that e^s times f(t) is equal to f(t+1), more generally e^(s T) f(t) = f(t+T)
    This is used in automatic to calculate the transfert function of a "pure delay".

  • @Calcprof
    @Calcprof 10 หลายเดือนก่อน +8

    I love this kind of operational calculus. Anyone studying Lie groups knows about this result.

  • @nizogos
    @nizogos 10 หลายเดือนก่อน +11

    In the last step,if we assume h is holomorphic with h=fg then e^D (h)=h(x+1)=fg(x+1)=f(x+1)*g(x+1)

  • @skylerharris3914
    @skylerharris3914 10 หลายเดือนก่อน +8

    I just so happen to have watched Dr. peyam’s half decade old video on this exact thing earlier today, then you drop this.

    • @maths_505
      @maths_505  10 หลายเดือนก่อน +13

      Dude at this point I'm not even surprised that Peyam left the rest of math TH-cam in the dust half a decade ago...I remember doing a video on f'=f^(-1) and someone in the comments pointed out that Michael Penn did a video on that a year or 2 ago ....after one TH-cam search I found out that Dr. Peyam did that 5 years before even Penn!! That guy's criminally underrated and definitely one of the best channels on TH-cam.

  • @edmundwoolliams1240
    @edmundwoolliams1240 10 หลายเดือนก่อน +7

    Excellent job! I have seen this before, but not the last part about the product rule! Never knew it has such a "nice" Product rule!!!

  • @thatdude_93
    @thatdude_93 10 หลายเดือนก่อน +7

    They actually taught me this derivative.

  • @MrWael1970
    @MrWael1970 10 หลายเดือนก่อน +1

    Very useful analysis. Thank you

  • @AB-nu5we
    @AB-nu5we 10 หลายเดือนก่อน +1

    Majik. I like that little illustrative chart showing the relationship between N and k and how their indices are related in the last example.. Nice visualization tool. I'm getting voice.

  • @knivesoutcatchdamouse2137
    @knivesoutcatchdamouse2137 10 หลายเดือนก่อน +1

    At 8:28 , it should be
    k (k - 1) ... (k - (N - 1))
    in the numerator, wheras you have
    k (k - 1) ... (k - (N + 1)).
    Not a big deal in the end, and I like the video!

  • @yoav613
    @yoav613 10 หลายเดือนก่อน

    Very nice! And at the end abonus, the product rule that we've always dream'ed about😊

  • @RalfStephan
    @RalfStephan 10 หลายเดือนก่อน

    Since the McLaurin expansion is the so-called exponential generating function (egf) of f, your work shows the (well known) fact that multiplying the egf with e^x shifts the expansion to the left. (I think)

    • @samsonblack
      @samsonblack 10 หลายเดือนก่อน

      You have the right idea, but a generating function (exponential, ordinary, etc.) is a power series generated from a *sequence*. In the case of the Maclaurin series, it is the EGF that comes from the sequence of derivatives of f.

  • @kanavkumar8079
    @kanavkumar8079 10 หลายเดือนก่อน

    Recently watched Supwares video on the topic. Great minds truly think alike!

  • @josephlorizzo8997
    @josephlorizzo8997 10 หลายเดือนก่อน

    thank you very much, i wanted to understand this since i First saw It

  • @azai.mp4
    @azai.mp4 10 หลายเดือนก่อน

    Seems like in general, e^D(f(x)) = T_x(x+1) where T_x is the Taylor series approximation of f at x.
    Because T_x(t) = f(x) + (t-x)^1/1! f'(x) + (t-x)^2/2! f''(x) + ...
    And for t = x+1, that's just f(x)/0! + f'(x)/1! + f''(x)/2! + ... = e^D(f(x))

  • @Kram1032
    @Kram1032 10 หลายเดือนก่อน

    so does that mean that, like
    limit a->0 ((e^(a d/dx) - e^(-a d/dx))/(2 a) f(x)) = limit a-> 0 ((sinh(a d/dx) / a) f(x) ) = f'(x)?
    (because e^(a d/dx) f(x) = f(x+a) and so on)

  • @tomaszkochaniec9421
    @tomaszkochaniec9421 10 หลายเดือนก่อน

    Q: if we have f(x+1)=exp(f(x)) can we write f(x)^n= n-th derivative with f(x) for n to infinity?

  • @SuperSilver316
    @SuperSilver316 10 หลายเดือนก่อน

    This is probably obvious but e^(-D)(f) = f(x-1) right?
    Interesting that the product rule here is what you might call the “freshman” product rule (apply the operator on both functions) and then multiply them. I guess since all you are doing is a horizontal translation to the function, that should make sense?

  • @hafedabrar4333
    @hafedabrar4333 9 หลายเดือนก่อน

    very nice thank you 😊

  • @spoon_s3
    @spoon_s3 10 หลายเดือนก่อน +1

    really nice video! but i want to ask, why does D^n equals the nth order derivative? isn’t ^n just a notation, which doesn’t mean exponentiation? (sorry for bad english)

    • @maths_505
      @maths_505  10 หลายเดือนก่อน +2

      We're defining it here as the order of the derivative

  • @problemasresolvidos_ar
    @problemasresolvidos_ar 10 หลายเดือนก่อน

    Hey man! I admire all your work! ¿What resources you use to learn about this topics?

  • @kaanetsu1623
    @kaanetsu1623 10 หลายเดือนก่อน +3

    Pls take this integral
    Int( sin ( (cotx)^2) * (( secx)^2) ) dx
    Limits 0 to pi/2

  • @shardulkakade9365
    @shardulkakade9365 10 หลายเดือนก่อน +1

    There seems to be some error in the vid

    • @maths_505
      @maths_505  10 หลายเดือนก่อน +4

      ???

  • @pandavroomvroom
    @pandavroomvroom 10 หลายเดือนก่อน

    it took infinite derivatives before e^x was finally changed...

  • @RandomBurfness
    @RandomBurfness 10 หลายเดือนก่อน

    Since you don't have e^D(fg) = e^D(f)g+fe^D(g), I don't think e^D can be called a derivative, no?

  • @fartoxedm5638
    @fartoxedm5638 10 หลายเดือนก่อน

    My favourite way of switching the order is the following
    We have 0 ≤ k ≤ n ≤ oo
    Then just change the order in which you construct this chain