The Short Time Fourier Transform | Digital Signal Processing

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น • 29

  • @Nine-qh4ft
    @Nine-qh4ft 8 ปีที่แล้ว +22

    THIS IS AWESOME.Very clear and very good examples, now it is so much easier to understand. Thank you ! I mean it.

  • @allmightqs1679
    @allmightqs1679 6 ปีที่แล้ว +1

    My concepts are now clear as day! Can't thank you enough

  • @zookaroo2132
    @zookaroo2132 3 ปีที่แล้ว +1

    This is the clearest explanation of STFT I have found so far

  • @jakobhlous
    @jakobhlous 5 ปีที่แล้ว +2

    Amazing explanation. Brilliant idea to connect this topic to analog telephones, so it is easier to understand. Very well done, could get me a better grade at my exam ;)

  • @gabiryoussef3941
    @gabiryoussef3941 6 ปีที่แล้ว +1

    Thank you for your great explanation. You are the best. Please continue.

  • @go64bit
    @go64bit 6 ปีที่แล้ว

    This is the best explanation I’ve ever seen! Thanks.

  • @amirantonir2574
    @amirantonir2574 8 ปีที่แล้ว +5

    Hi, you mention references to wavelets in the bibliography for the class. Where can these be found ?

  • @jaanuskiipli4647
    @jaanuskiipli4647 6 ปีที่แล้ว +1

    best explanation out there!

  • @MrWarmperfume
    @MrWarmperfume 10 ปีที่แล้ว +1

    Wow, what a nice lecture! Thanks a lot!

  • @ArthurdosSantos
    @ArthurdosSantos 4 ปีที่แล้ว +2

    This is gold

  • @dennishuang3498
    @dennishuang3498 3 ปีที่แล้ว

    Fantastic lecture! Thanks!

  • @djamelabd4116
    @djamelabd4116 7 ปีที่แล้ว +1

    Very good explanations

  • @vandaliztik9266
    @vandaliztik9266 4 ปีที่แล้ว +1

    a question, is stft() in Matlab is calculated as a short time fft

  • @rhodelucas
    @rhodelucas 7 ปีที่แล้ว

    awesome, dude! btw, when u wrote down dt*df=2pi I must admit i kinda went "damn nigga, thats some real quantum-mechanics-behind-the-curtain"

  • @aminfadaei4056
    @aminfadaei4056 5 ปีที่แล้ว +1

    Thanks, it was pretty useful

  • @NonCnse
    @NonCnse 8 ปีที่แล้ว +1

    where can i find speech samples to analyze in? or the sppech corpus? I need it for my project.

  • @jimjohnson357
    @jimjohnson357 3 ปีที่แล้ว

    Should the power in dB not be from: 20*log_(10)(abs(X[m;k]))? Since power is equal to the magnitude^2? i.e. if you wanted to use 10log10, you'd need to include the power of 2 inside the logarithm: abs(X[m;k])^2

  • @colinfera433
    @colinfera433 9 ปีที่แล้ว +1

    excellent overview !!!

  • @closingtheloop2593
    @closingtheloop2593 6 ปีที่แล้ว +1

    Solid. Thanks!

  • @yimingzhu8238
    @yimingzhu8238 8 ปีที่แล้ว +1

    what is the window function in the video?

  • @ankitghosh8256
    @ankitghosh8256 7 ปีที่แล้ว +1

    hi, how do you get the time and you say that the y axis represents magnitude of DFT coefficients, but its just the frequency axis. magnitude is represented by hue variation of the colour. could you please help to get away with confusion ?

    • @pradyothshandilya8065
      @pradyothshandilya8065 5 ปีที่แล้ว

      The y axis represents the frequency axis. The hue represents the magnitude of the corresponding frequency. So to be more clear, if you find a lighter or as the guy in the video says, a "brilliant" band somewhere on the spectrogram, the corresponding y axis value represents how high the frequency of the signal is and the amount of "brilliance" represents how loud the signal of the corresponding frequency is

  • @athoumanimoustadjib7813
    @athoumanimoustadjib7813 3 ปีที่แล้ว

    What is the code python of STFT?

  • @antoineblaud2171
    @antoineblaud2171 4 ปีที่แล้ว

    Thank you ! I understand now :)

  • @kuotinglin582
    @kuotinglin582 8 ปีที่แล้ว +2

    it's great !

  • @yumik4990
    @yumik4990 6 ปีที่แล้ว +2

    Hey, this is an awesome video to understand Spectrogram. I was so excited with your youtube video and so I created blog post that reproduce many of the plots in your presentation in python fairyonice.github.io/implement-the-spectrogram-from-scratch-in-python.html.
    Thank you very much for this great tutorial.
    Just one comment: Your slide at 2:39 contains 6 peaks and you say that two of the each peaks corresponds to one dial sound. As you are using the digits 1, 2 and 3, I would expect to see 4 peaks at 697Hz, 1209Hz, 1336Hz and 1477Hz, rather than 6 peaks in the frequency domain plot. Maybe you are rather using digits 1,5,9? I am not sure. But anyway, the concept was very clearly explained so thank you very much!

  • @sikor02
    @sikor02 8 ปีที่แล้ว +1

    how to convert spectrogram to audio signal?

    • @Kostarion1
      @Kostarion1 6 ปีที่แล้ว

      you can't, because you discard frequency phase information during the spectrogram generation

  • @suwoncjh
    @suwoncjh 9 ปีที่แล้ว +1

    thanks!!!!