Line Integrals: Full Example

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 ก.พ. 2025
  • FULL VECTOR CALCULUS PLAYLIST: • Calculus IV: Vector Ca...
    This video is a fully worked example of a line Integral. We use the Line Integral formula to compute the Line integral of a function f(x,y) over top of a circle of radius 2. We first parameterize the curve, then write the function in terms of that parameter, and then substitute into the formula.
    My first video that introduces the idea of line integrals is here: • What is a LINE INTEGRA... )
    OTHER COURSE PLAYLISTS:
    ►CALCULUS I: • Calculus I (Limits, De...
    ► CALCULUS II: • Calculus II (Integrati...
    ►MULTIVARIABLE CALCULUS (Calc III): • Calculus III: Multivar...
    ►DIFFERENTIAL EQUATIONS: • How to solve ODEs with...
    ►DISCRETE MATH: • Discrete Math (Full Co...
    ►LINEAR ALGEBRA: • Linear Algebra (Full C...
    OTHER PLAYLISTS:
    ► Learning Math Series
    • 5 Tips To Make Math Pr...
    ►Cool Math Series:
    • Cool Math Series
    BECOME A MEMBER:
    ►Join: / @drtrefor
    MATH BOOKS & MERCH I LOVE:
    ► My Amazon Affiliate Shop: www.amazon.com...
    SOCIALS:
    ►Twitter (math based): / treforbazett
    ►Instagram (photography based): / treforphotography

ความคิดเห็น • 75

  • @jgseg6828
    @jgseg6828 3 ปีที่แล้ว +67

    Bro, you're one of the most formidable teachers I've ever met. Thanks for these lessons!

  • @hannananan9427
    @hannananan9427 2 ปีที่แล้ว +17

    I really can't believe that these videos are free to watch. God bless you, and your family!

  • @dhrubojyotipaul2585
    @dhrubojyotipaul2585 4 ปีที่แล้ว +34

    Your lecture series is really awesome.
    Please make a series on conics section that will help lot of students

  • @madeleinecallan3153
    @madeleinecallan3153 3 ปีที่แล้ว +23

    Currently a student over zoom in Calc 3. I have no idea what the book is saying. YOUR VISUALS ARE SAVING ME! Thank you sir 🥳

    • @literallynull
      @literallynull 8 หลายเดือนก่อน

      Exactly the same thing, we learn with Soviet textbooks and they are obscure

  • @ketansingh-f8z
    @ketansingh-f8z หลายเดือนก่อน

    this is pure Gold...never understood line integral this deeply...thank you so much professor

  • @Thadnill
    @Thadnill 4 ปีที่แล้ว +5

    Can't describe how much I appreciate this, I have my Multi-variable calculus exam in a couple of days and your videos is just what I need. Great animations, visuals and explanations!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +1

      Thank you and good luck!!

  • @anantjain9315
    @anantjain9315 3 ปีที่แล้ว +5

    I am on a liking streak. thanks for these videos.

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +3

      I like your liking streak!

  • @edmund3504
    @edmund3504 4 ปีที่แล้ว +5

    Taking Mathematical Physics right now and these videos really help brush off the dust from those old calculus topics I learned a while back. Thank you so much :)

  • @a2_zhongbaode718
    @a2_zhongbaode718 4 หลายเดือนก่อน +2

    Thank you for your lessons! I just love how lively you are and how you explain things step by step! Truely saving my university life

  • @AG-pm3tc
    @AG-pm3tc 3 ปีที่แล้ว +2

    These types of videos are life savers my dude, you earned a subscriber that's for sure.
    On a side note, maybe we are maybe a bit of a spoiled generation, with all the fancy computer graphics and great teachers the can feed us this knowledge with a spoon (it's like having the best privet teachers at your disposal always), which (IMO) actually hurts the solidification of this knowledge when you studying it for the first time (because you face less obstacles), but on the other hand, when you actually know this stuff, these videos are amazing to deepen intuition and refresh subjects quickly when they are relevant.
    Anyway, sorry for the mumbling, thanks for the great videos, i give you my respect a simple engineering student who tries his best to deepen his understanding of math.

  • @cosmefulanito6386
    @cosmefulanito6386 3 ปีที่แล้ว

    I stand up and salute you, by far the best calculus teacher i`ve ever known

  • @dukkie18
    @dukkie18 3 หลายเดือนก่อน +1

    these videos are great, as im following a vector calculus course now, and there is some concepts and things that i have been taught in other courses, that i have somehow missed or forgotten, and those concepts and things are also explained here

  • @shashankrajashekar1672
    @shashankrajashekar1672 3 ปีที่แล้ว +4

    Its important to analyse the topics visually than in equations...... Thanks for making it clear

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +1

      Glad you liked it!

  • @jlpsinde
    @jlpsinde 3 ปีที่แล้ว +5

    This is amazing, the visuals and you are a genius teacher.
    I am a physics teacher.

  • @dolly3883
    @dolly3883 3 ปีที่แล้ว +1

    No one can teach better than you thank you so muchh sir

  • @sophieczelusta3666
    @sophieczelusta3666 3 ปีที่แล้ว +2

    sir, you are a godsend

  • @malefetsanekoalane4549
    @malefetsanekoalane4549 4 ปีที่แล้ว +1

    Thanks Herr Doktor.Beautiful explanation.

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว

      You’re most welcome!

  • @continnum_radhe-radhe
    @continnum_radhe-radhe 3 ปีที่แล้ว +2

    I think your video is enough rather than a book 🙏🙏🙏

  • @dydx3741
    @dydx3741 4 ปีที่แล้ว +1

    that's really awesome explanation....I think you are born to be a teacher.
    really appreciate your work
    subscribed with Bell icon on 😊😁👍

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว

      Thanks a lot!!!

  • @infinix2003
    @infinix2003 2 ปีที่แล้ว

    i was able to solve just by seeing the question, thank you for your help in previous videos

  • @林士堯-d2c
    @林士堯-d2c 10 หลายเดือนก่อน

    These series for calculus so a million times better than my college professor's. Why I'm not seeing this earlier?

  • @devashishshah9021
    @devashishshah9021 4 ปีที่แล้ว +1

    Love the Lectures!! Please make a playlist on complex analysis

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว

      I plan to!

  • @rajat4260
    @rajat4260 4 ปีที่แล้ว +1

    Awesome explanation..thank you.

  • @petergenebayothernandez4633
    @petergenebayothernandez4633 4 ปีที่แล้ว

    This videos are soooooo underrated

  • @annushekhar6042
    @annushekhar6042 3 ปีที่แล้ว +1

    Wow you made it look so easy :)

  • @johnjobs3027
    @johnjobs3027 4 ปีที่แล้ว +1

    Great videos . Greatly appreciated. 👏

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว

      Glad you enjoyed!

  • @continnum_radhe-radhe
    @continnum_radhe-radhe 3 ปีที่แล้ว +2

    Thank you sir 🔥🙏🔥

  • @billofrights5064
    @billofrights5064 หลายเดือนก่อน

    For clarity, I would have liked to have seen:
    Step 1: Parameterize C
    r(t) = g(t) i + h(t) j = 2 cos t i + 2 sin t j
    f(x, y) = f(g(t), h(t))
    But Dr. Bazett is far more clear than the old text books I consulted for review.

  • @ARKBlender
    @ARKBlender 2 ปีที่แล้ว +1

    You do indeed teach amazing but i didnt understand a lot
    maybe because i just started it

  • @jasper3410
    @jasper3410 3 ปีที่แล้ว +6

    So, did we calculate the given area of the curve in this example? Anyway, thanks for the video. It really helps!

  • @ileanadominguez6055
    @ileanadominguez6055 2 ปีที่แล้ว

    Thank you very much for your videos!

  • @GulzarAhmad-sw1kh
    @GulzarAhmad-sw1kh 2 ปีที่แล้ว

    Good Explanation. I think it should be emphasized that circle at the bottom is a projection of the f(x,y).

  • @anasmikael5753
    @anasmikael5753 ปีที่แล้ว +5

    Can I ask , how did you get (1+sin 2t) and how you get sqrt((-2sin t)^2 + (2 cos t)^2) become 2 dt ? Sorry I'm a new learner.

    • @ed8620
      @ed8620 10 หลายเดือนก่อน +5

      There is an important identity in trigonometry which is really important for these problems, its sin^2(x)+cos^2(x) = 1 for any value of x. So that’s why it’s just 1 for the 1+sin2t bit, and then you have sqrt(4sin^2(t)+4cos^2(t)) you can factor out the 4, and then the identity brings the sin^2+cos^2 to 1, so you have sqrt(4(1))=2
      Also the sin2t came from the double angle formula. It says that sin(2t)=2cos(t)sin(t) hope that makes sens😊

    • @arniedamaniac6206
      @arniedamaniac6206 6 หลายเดือนก่อน +1

      @@ed8620is this true because the sum of these values rooted is equal to the hypotenuse in the unit circle. Which is by definition 1?

  • @redtree732
    @redtree732 6 หลายเดือนก่อน

    AMAZING.

  • @zom__b_5632
    @zom__b_5632 4 ปีที่แล้ว +1

    Thank you!

  • @rainversion
    @rainversion 4 ปีที่แล้ว +1

    thank you

  • @scholar-mj3om
    @scholar-mj3om 2 ปีที่แล้ว

    Excellent💯💯

  • @sergiolucas38
    @sergiolucas38 3 ปีที่แล้ว +1

    Good video.

  • @peym9536
    @peym9536 2 ปีที่แล้ว

    Thank you man....

  • @ΚωνσταντίνοςΛαζαρίδης-ξ9ι
    @ΚωνσταντίνοςΛαζαρίδης-ξ9ι หลายเดือนก่อน

    thanks!

  • @giannisfilippou7460
    @giannisfilippou7460 ปีที่แล้ว

    lovely stuff. I am planning to take an aerodynamics course so i need some recap on math. You say in your first video that this is about 1/3 of your university course. When you say 1/3 are you referring to how many subjects you "touch" or how deep you go into each subject ? In any case i will surely be watching all the series. Thanks in advance.

  • @300risesagain5
    @300risesagain5 2 ปีที่แล้ว +1

    Man why didn't I find your channel a little earlier?

  • @physicslover1950
    @physicslover1950 4 ปีที่แล้ว

    Please do 1 video for optimization with line integrals like if we are given a multivariabe function f(x,y) and we have to compute its line integral from (a,b) to (c,d) then what should be the equation of the curve (over which the function is to be integrated) so that the line integral is minimum.

  • @gerardsagliocca6292
    @gerardsagliocca6292 2 ปีที่แล้ว

    Should show how you got the parametric equations.

  • @edson._.6179
    @edson._.6179 2 หลายเดือนก่อน

    The line integral gives you the area under the f(x,y) and above the r(t) functions or the length of the line of the f(x,y) function that lives above the r(t) function?

  • @nancyndaruga6428
    @nancyndaruga6428 3 ปีที่แล้ว +1

    hey nice video....I have a question though why when finding the height..that is the z component do you use f(x,y) instead of computing k directly..please reply ASAP

  • @Alex-nm8xn
    @Alex-nm8xn 4 ปีที่แล้ว +1

    Amazing :)

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +1

      Thanks! 😄

  • @mnada72
    @mnada72 3 ปีที่แล้ว +1

    One of the topics dealt with blindly before but never visualized or understood. So line integral computes a surface area of a function over a curve, is it right?

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +2

      That is one geometric interpretation yes, but there are several

  • @بنوشواش
    @بنوشواش 4 ปีที่แล้ว +1

    WOOOOOOW !

  • @ryanmcginnis590
    @ryanmcginnis590 3 ปีที่แล้ว +1

    I believe you gave the wrong g prime of t and h prime of t, it seems u just left them unprimed. or am I missing something? either way it shouldn't change the answer since it is taken as absolute in terms of distance.

    • @ryanmcginnis590
      @ryanmcginnis590 3 ปีที่แล้ว +1

      oh actually I see after watching further u clarified my question cuz u wrote it right on the screen so disregard previous comment.

  • @adityaagarwal7357
    @adityaagarwal7357 ปีที่แล้ว +1

    wow

  • @A2Zphysics
    @A2Zphysics 3 ปีที่แล้ว

    Where it is used in high school physics

  • @samuelhawksworth1923
    @samuelhawksworth1923 2 ปีที่แล้ว

    So I saw that line integrals are defined on a scalar field, is this an example of a scalar field? I haven't seen them before and am not too sure

  • @jordanfernandes581
    @jordanfernandes581 4 ปีที่แล้ว +1

    Hi. I tried evaluating the integral at 5.12 and I'm getting 2pi as the answer. Am I doing something wrong ?!

    • @DrTrefor
      @DrTrefor  4 ปีที่แล้ว +4

      Did you miss the orange 2 on the right?

    • @jordanfernandes581
      @jordanfernandes581 4 ปีที่แล้ว

      @@DrTrefor I used U substitution on (2t) so I replaced the orange 2dt as du. The 1 integrated to 2pi and the sin(u) integrated to -cos(u) and evaluated to zero.

    • @jordanfernandes581
      @jordanfernandes581 4 ปีที่แล้ว +2

      Ohh. I didn't distribute the 2 amongst both the 1 and the sin(2t) terms. I tagged it only with sin(2t). I get 4pi now. Thanks for replying 🙂

  • @juliamacrae2245
    @juliamacrae2245 2 ปีที่แล้ว

    Hello, trying to transition to multivariable calculus. I don't really understand parameterization. Why don't we define the curve C as x^2 + y^2 = 2^2. And why are vectors being used a lot all of a sudden, unlike single-variable calculus? I hope that makes sense.

    • @anshumanagrawal346
      @anshumanagrawal346 2 ปีที่แล้ว +1

      That's how the curve C is defined, indeed but to compute the line integral easily we need to parameterize it. You can watch the previous few videos in this playlist, I think they will help understand.
      For your second question, it's Vector Calculus of course we're gonna be using Vectors a lot

  • @thebrightside2114
    @thebrightside2114 3 ปีที่แล้ว +1

    sir why we right sometimes velocity vector as it is in line integration and some times magnitude of velocity vector?

    • @DrTrefor
      @DrTrefor  3 ปีที่แล้ว +2

      It just depends on whether we care about speed (thus take magnitude) or velocity, and thus want direction as well.

  • @Uriakatos
    @Uriakatos 2 ปีที่แล้ว

    Ez