Neural Networks - Theory and Implementation

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ม.ค. 2025

ความคิดเห็น • 21

  • @thantzinmaung-yq6cu
    @thantzinmaung-yq6cu 11 วันที่ผ่านมา +2

    Needed this the most. Thank you very much. I am spending 1-2 hours a day trying to learn ML/AI

    • @ComputationalElectromagnetics
      @ComputationalElectromagnetics  10 วันที่ผ่านมา +2

      Glad you found it helpful! Keep up the good work. And don't forget to do some actual projects and work. That's what helped me a lot.

  • @ComputationalElectromagnetics
    @ComputationalElectromagnetics  15 วันที่ผ่านมา +3

    Glad to see you like it. Subscribe to watch the upcoming ones.

  • @danjour
    @danjour 7 วันที่ผ่านมา +1

    thank u for sharing your knowledge.

  • @Oogway-i1g
    @Oogway-i1g 11 วันที่ผ่านมา +2

    drop a ml/deep learning course at this point mate.
    you are good at explaining things

    • @ComputationalElectromagnetics
      @ComputationalElectromagnetics  10 วันที่ผ่านมา

      Thanks, I appreciate that, I do enjoy teaching. I was definitely going to post more videos but a full course? Hmm... You got me interested... Maybe. Tune in for more please.

  • @AnsonHaffey
    @AnsonHaffey 14 วันที่ผ่านมา +2

    would you mind updating the description of the video and including a link to your slides? I have been coming back to this video periodically it would be nice to have something quicker to backtrack to. Very nice video by the way. Keep it up.

    • @ComputationalElectromagnetics
      @ComputationalElectromagnetics  14 วันที่ผ่านมา

      Thanks. If the link is not yet shown in the description, here it is: github.com/mediard/education Maybe it takes a while for the description to display a link. The presentation file is also there in the GitHub.

  • @Satish_deepvoice
    @Satish_deepvoice 7 วันที่ผ่านมา

    Do I have to learn pytorch, numpy before start

    • @ComputationalElectromagnetics
      @ComputationalElectromagnetics  7 วันที่ผ่านมา

      Definitely not. I didn’t use PyTorch here. That is the point. We develop the codes from scratch without using any frameworks so you can learn the basics.
      Numpy is different. I had to use a few of its simple functions in order to use the vectorization capabilities. You don’t have to learn them in advance though. I think one can understand them as they go through the codes. Without the Numpy functions the for loops for computing matrix multiplication would take forever in Python “interpreter”.

  • @Satish_deepvoice
    @Satish_deepvoice 7 วันที่ผ่านมา

    Where do i start if I'm beginner

    • @ComputationalElectromagnetics
      @ComputationalElectromagnetics  7 วันที่ผ่านมา

      If you have a good grasp of linear algebra and calculus including some partial derivatives, this video is a great place to start. If not, I would recommend Andrew Ng’s Machine Learning Specialization program at Coursera.

  • @TheJimbosan
    @TheJimbosan 14 วันที่ผ่านมา +1

    Great Video, Thank you!!!

  • @Pingu_astrocat21
    @Pingu_astrocat21 13 วันที่ผ่านมา +1

    Subscribed. this is wonderful content!

  • @sajithminrutha3841
    @sajithminrutha3841 15 วันที่ผ่านมา +2

    Thank You

  • @MrNootka
    @MrNootka 16 วันที่ผ่านมา +2

    Thanks!