High-Performance Time Series Forecasting in R & Python

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 พ.ย. 2024

ความคิดเห็น • 17

  • @Vishuycyrus
    @Vishuycyrus 4 ปีที่แล้ว +4

    Very Nice and Informative... Gr8 work Matt and David .. Kudos to u guys :)

  • @khadeerakbar1933
    @khadeerakbar1933 4 ปีที่แล้ว +2

    Very nice course

  • @haraldurkarlsson1147
    @haraldurkarlsson1147 2 ปีที่แล้ว

    Hmm - over my head. Looks like a long infomertial. I had hope to see some examples of the use of timetk.

  • @jamespaz4333
    @jamespaz4333 3 ปีที่แล้ว

    hi Matt. I understand that, the more complex the model is, the more accuracy it has. However, in terms of explaining it to an executive level, I see a challenge. Are you including methods to explain your models in this course?

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว +1

      Hi James, Normally we explain what factors contribute to a model. This is called model explainability (interpretability), and we teach this in DS4B 201-R, which is data science for business. We use a tool called LIME for explaining why employees are likely / not likely to churn. Here's a link to the course (which is part of our 5-Course R-Track): university.business-science.io/p/hr201-using-machine-learning-h2o-lime-to-predict-employee-turnover/

    • @jamespaz4333
      @jamespaz4333 3 ปีที่แล้ว +1

      @@BusinessScience Awesome! Thanks Matt.

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว

      @@jamespaz4333 You got it!

  • @StatiR_br
    @StatiR_br 3 ปีที่แล้ว +1

    Hi. Do you have a contact email so I can ask you some questions about the course?

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว

      Absolutely. You can reach us through our contact form. www.business-science.io/contact.html

  • @imranh2774
    @imranh2774 3 ปีที่แล้ว

    Is python version of the modeltime available ?

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว +1

      Not yet... Took over a year to develop in R. Will take some time for Python.

    • @imranh2774
      @imranh2774 3 ปีที่แล้ว +1

      @@BusinessScience I think python will really help compete with market leaders like prophet and greykite. IMHO i think your stuff has a lot more to offer than prophet etc, so will be eagerly waiting for the python one.

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว +1

      @@imranh2774 Modeltime integrates all of them, so you get everything in 1. Our philosophy is experiment... Don't go in with any assumptions, let the best algorithms win out. This approach works very well. Will be a year or so for Python. R is available now though.

  • @aakashparsi4186
    @aakashparsi4186 3 ปีที่แล้ว

    Will it be feasible for intermittent demand?

    • @BusinessScience
      @BusinessScience  3 ปีที่แล้ว +1

      Yes absolutely! Intermittent is no problem. You just need to learn how.