Uji Regresi Linier Sederhana Dengan SPSS | Pembahasan Lengkap!
ฝัง
- เผยแพร่เมื่อ 10 ก.พ. 2025
- Cara melakukan uji regresi sederhana
Tonton juga syarat sebelum melakukan uji regresi sederhana:
1. Uji validitas dan reliabilitas • Uji Validitas Dan Reli...
1. cara uji linearitas data • Cara Melakukan Uji Lin...
2. cara uji normalitas data penelitian • Uji Normalitas Data SPSS
3. uji deskriptif statistik terlengkap • Cara Uji Statistik Des...
=================
cara melakukan uji regresi linier sederhana, cara uji regresi linier sederhana dengan spss, cara uji regresi linier sederhana, cara uji regresi linier sederhana spss, uji regresi linier sederhana, uji regresi spss, uji regresi linier sederhana spss, uji regresi linier sederhana 2 variabel, tutorial uji regresi linier sederhana, tutorial uji linier sederhana spss
#tutorial #spss #linier #regresion #variabel #variabel
Terima kasih banyak pak, videonya bagus sekali dan sangat bermanfaat untuk banyak orang. Namun jika saya boleh memberi saran, lebih baik lagi jika menyertakan sumber/kutipan rumusnya🙏.
Rumusnya ada dibuku SPSS kak
Videonya sangat bagus sekali, jelas lugas dan bermakna, ada deskripsi cara membaca nya jugaaaaa. tip bangetttttttt,, pasti saya share, like, and subcribe kak
Makasih kak😅
Kak buat tutorial uji korelasi rank spearman secara lengkap kak 🙏🏻
Terima kasih kak, sangat bermanfaat sekali
Ini yang saya cariiiii❤❤❤❤
Senang bisa membantu kak
Permisi pak izin bertanya misal punya saya judulnya memgenai pengaruh varibel x1 dan x2 terhadap Y, lalu untuk menguji hipo pertama dan kedua mengenai pengaruh varibel x1 terhadap y dan pengaruh variabel x2 terhadap y perlu melakukan uji regresi linear sederhana.
Lalu untuk nilai df tabel t itu nanti K = 2 atau 3 yaa pak ?
Smangat terus bang inget singgah juga ya
Pak boleh tanya saya buat skripsi tentang lama penggunaan korset terhadap penurunan TFU
Pengguna korsetnya dibagi kedalam 2 kelompok
Kelompok yamg menggunakan < 6 jam
Dan kelompok kedua > 6 jam
Kira-kira untuk metode analisis regresi linier ini sesuai tidak ya pak dengan skripsi saya ?
Halo kak aku mau tanyaa, judul saya Efektivitas model pembelajaran... terhadap hasil belajar.... Data yang diambil ada angket, pretest dan postest. Untuk yang di uji regresi berarti yang data mana ya kak? Semoga dijawab karena sudah sangat stuck 🥺🙏 terima kasih sebelumnya
Halo! Jika Kaka ingin menguji efektivitas model pembelajaran terhadap hasil belajar menggunakan analisis regresi, Kaka akan menggunakan data pretest dan posttest sebagai variabel dependen (variabel yang ingin Kaka prediksi atau jelaskan) dan variabel independen (variabel yang digunakan untuk memprediksi atau menjelaskan variabel dependen).
Jadi, dalam konteks Kaka, data yang diambil untuk diuji menggunakan regresi adalah skor pretest dan posttest siswa. Skor pretest akan menjadi variabel independen, sementara skor posttest akan menjadi variabel dependen.
Misalnya, Kaka ingin menguji seberapa baik model pembelajaran tertentu memprediksi peningkatan hasil belajar siswa (posttest) berdasarkan skor awal siswa (pretest). Dalam hal ini, Kaka akan menggunakan skor pretest sebagai variabel independen dan skor posttest sebagai variabel dependen dalam analisis regresi Kaka.
Jadi, secara singkat:
• Variabel dependen (Y) : Skor posttest (hasil belajar setelah penerapan model pembelajaran)
• Variabel independen (X) : Skor pretest (hasil belajar sebelum penerapan model pembelajaran)
Dengan menggunakan regresi, Kaka dapat menentukan seberapa kuat hubungan antara skor pretest dan posttest, serta seberapa signifikan pengaruh model pembelajaran terhadap peningkatan hasil belajar siswa setelah mengontrol untuk skor awal mereka.
Semoga membantu kak.
Wahh terima kasih banyak kakk. Sangat membantu memberikan pencerahan kepada saya 🥺 terima kasih banyak ya kakk ✨
Sama2 kak 😇
berarti pak kalo cuma post-test dri kelompok eksperimen dan kelompok kontrol itu yang jadi x yang hasil post-test kelompok kontrol ya, dan yang Y hasil post-test kelompok eksperimen ya, mohon korek si pak saya kebingungan, semoga di balas 🙏🏻🙏🏻
Iya kak.
Tapi balik lagi ke tujuan penelitianya.
Mohon izin bertanya kak, judul penelitian saya pengaruh media pembelajaran terhadap hasil belajar siswa. Data yang saya ambil adalah pretest postest (kelas eksperimen) dan pretest postest (kelas kontrol). Untuk uji regresi yang dimasukkan pada kolom X dan kolom Y data yang mana ya kak ?
Kak udah tau jawabannya belum? Aku juga bingung soal ini, tolong bantu kalau tau
Menggunakan Posttest dengan Pretest sebagai Kovariat kak.
Ini adalah metode alternatif yang sering digunakan dalam analisis data pretest-posttest, di mana posttest dijadikan variabel dependen dan pretest serta kelompok dijadikan variabel independen.
Langkah-langkah di SPSS :
1. Siapkan Data di SPSS
Data harus mencakup kolom untuk pretest, posttest, dan kelompok (0 untuk kontrol, 1 untuk eksperimen).
Contoh Data:
| Pretest | Posttest | Kelompok |
|---------|----------|----------|
| 80 | 85 | 0 |
| 78 | 82 | 0 |
| 85 | 90 | 1 |
| 82 | 88 | 1 |
2. Analisis Regresi di SPSS:
Langkah 1: Buka menu Analyze > Regression > Linear...
Langkah 2: Masukkan variabel Posttest sebagai variabel dependen (Dependent).
Langkah 3: Masukkan variabel Pretest dan Kelompok sebagai variabel independen (Independent).
Langkah 4: Klik OK untuk menjalankan analisis regresi.
Mengapa Menggunakan Pretest sebagai Kovariat?
1.Kontrol terhadap Variabilitas Awal:
Dengan memasukkan pretest sebagai kovariat, kaka bisa mengontrol variabilitas awal di antara peserta, sehingga analisis lebih fokus pada pengaruh perlakuan terhadap perubahan dari pretest ke posttest.
2.Meningkatkan Akurasi:
Ini bisa memberikan hasil yang lebih akurat karena mempertimbangkan skor awal masing-masing peserta.
3.Interpretasi Hasil:
Koefisien untuk Pretest: Menunjukkan seberapa besar nilai pretest mempengaruhi nilai posttest.
4. Koefisien untuk Kelompok:
Menunjukkan pengaruh perlakuan (kontrol vs eksperimen) pada nilai posttest setelah mengontrol nilai pretest.
Contoh Hasil:
Jika koefisien Kelompok positif dan signifikan, ini berarti kelompok eksperimen (dengan perlakuan) memiliki skor posttest yang lebih tinggi dibandingkan kelompok kontrol, setelah mengontrol nilai pretest.
@@EndaChannel makasij banyak kak, membantu sekali
@@EndaChannel siap terimakasih kak🙏
@@EndaChannel pak tolong saya kalau saya sama itu seperti pengaruh pendekatan game terhadap motivasi belajar, 2 kelompok, eksperimen dan kontrol. nah ambil datanya post-test only desain , jadi kode x dan y nya yang hasil post-test kelompok mana pak, atau kedua hasil di masukan tapi gimana caranya pak
Kak izin bertanya, judul saya "pengaruh model pbl terhadap hasil belajar ipas pada peserta didik kelas 4 sd" ada pretest posttest kelas eksperimen dan pretes posttest kelas kontrol.
setelah itu saya di anjurkan menggunakan regresi untuk melihat pengaruh si model pbl nya. Saya ambil dari kuisoner 1-4 untuk.pbl itu nanti masuknya
Variabe x nilai pbl
Variabel y nilai.posttest eksperimen?
Betul begitu gak kak?
Iya benar, kaka sudah memahami konsepnya dengan baik!
izin bertanya kak,
jika judul penelitian pengaruh ai terhadap job insecurity dan job satisfaction, itu menggunakan uji regresi linier sederhana atau uji apa ya kak? terimakasih 🙏🏻
Kalau mau simpel dan pisah-pisah, pakai regresi linier sederhana. Kalau mau semua langsung bareng, pilih multiple regression atau MANOVA tergantung jenis data kaka.
Pak mau tanya boleh..kl efektivitas biaya pengobatan pake regresi atau anova ya
Untuk menilai efektivitas biaya pengobatan, pilihan antara regresi atau ANOVA tergantung pada bagaimana data dan variabelnya disusun kak.
Jika ingin melihat pengaruh antara biaya pengobatan dan efektivitasnya secara kuantitatif gunakan Regresi.Misalnya, jika efektivitas diukur dengan variabel numerik (misalnya skor kesehatan sebelum dan sesudah pengobatan) dan ingin melihat bagaimana biaya berpengaruh terhadap efektivitas, maka regresi lebih cocok.
Contoh: Apakah peningkatan biaya pengobatan berpengaruh dengan peningkatan efektivitas pengobatan?
Dan Jika ingin membandingkan efektivitas antara beberapa kelompok biaya pengobatan → ANOVA
Misalnya, jika biaya pengobatan dikelompokkan dalam kategori (rendah, sedang, tinggi) dan ingin melihat apakah ada perbedaan efektivitas antar kelompok tersebut, maka ANOVA lebih cocok.
Contoh: Apakah ada perbedaan efektivitas pengobatan antara kelompok biaya rendah, sedang, dan tinggi?
Intinya Kalau datanya berupa kategori biaya dan ingin melihat perbedaannya, gunakan ANOVA. Kalau ingin melihat pengaruh kuantitatif antara biaya dan efektivitas, gunakan regresi.
sampel yang dimaksut buat ngitung N itu sampel minimal atau sampel yang kita dapat dari proses cari responden pak? soalnya sampel yang saya dapat lebih besar dari sampel minimal
Mungkin mksud dari pertanyaanya adalah cara menentukan sampel ya kak? Jika demikian maka cara menghitung sampel penelitian bisa dengan menggunakan rumus slovin.
Atau jika populasi kecil, maka bisa juga semua populasi digunakan sebagai sampel.
Intinya: penentuan sampel disesuaikan saja dengan metode dan tujuan penelitianya kak.
Semoga membantu.
Pak jika ada negatif nya di -0.569
Maka kesimpulan nya seperti apa pak, kalau di dividio angka itu bernilai positif artinya bila promosi meningkat maka penjualan juga mengalami peningkatan sebesar 0.569.
Mohon penjelasan nya pak🙏
Maaf kak, mau tanya kira kira untuk teknik analisis data yang hanya satu linear itu pake regersi ya ka. Saya mah kurang faham kuanti ka. Metode yang saya gunakan adalah ekperimen tapi saya mandek di teknik analisis data nya mau pake apa ka. Mungkin kaka bisa bantu mengarahkan ya.
Izin bertanya kak, penelitian sy berjudul pengaruh model pembelajaran terhadap keaktifan belajar siswa, teknik pengumpulan data menggunakan angket dan tes untuk kelas eksperimen dan kelas kontrol
Untuk Variabel X menggunakan tes (pretest dan postest)
Dan variabel Y menggunakan angket
Uji regresinya bagaimana kak?mohon penjelasannya kak🙏
Uji regreai pada model penelitian kaka kurang tepat dilakukan. Dan sebaiknya menggunakan analisis sprti dibawah ini kak:
1. Uji Paired Sample T-Test (atau Wilcoxon jika data tidak normal) untuk Variabel X (pretest dan posttest) guna melihat perubahan hasil tes dalam kelompok eksperimen dan kontrol.
2. Uji Independent Sample T-Test (atau Mann-Whitney U jika data tidak normal) untuk Variabel Y (angket) untuk membandingkan hasil angket antara kelas eksperimen dan kontrol.
3. Analisis Deskriptif untuk melihat gambaran umum skor rata-rata, standar deviasi, dan kecenderungan data.
Jika perlu, bisa gunakan ANOVA atau ANCOVA jika ada lebih dari satu kelompok eksperimen.
Semoga membantu kak!
Baik kaka, Terima kasih banyak🙏
Tuhan memberkati 😇
@@anjeliamarselsametan5559 sama2 kak.
Izin bertanya pak, jika nilai Constant negatif (dibagian tabel coefficients) bagaimana solusinya pak ? Untuk uji prasyaratnya sudah memenuhi standar pak. Mohon pencerahannya pak 🙏🏻
Jika nilai Constant (intersep) pada regresi negatif, itu tidak selalu masalah asalkan hasilnya masuk akal secara teori dan logis.
Berikut langkah sederhana yang bisa Anda lakukan:
1. Pahami Konteks*
- Nilai Constant adalah prediksi Y saat semua X bernilai nol. Periksa apakah situasi ini realistis dalam penelitian Anda.
2. Periksa Skala Data
- Pastikan skala variabel sesuai. Jika skala terlalu besar atau kecil, lakukan normalisasi seperti menggunakan z-score.
3. Evaluasi Model*
- Pastikan semua variabel relevan sudah termasuk dalam model, dan tidak ada kesalahan dalam formulasi model.
4. Gunakan Dummy Jika Perlu
- Jika ada variabel kategori, cek apakah variabel dummy sudah benar.
5. Konsultasi Literatur
- Bandingkan dengan penelitian serupa. Konstanta negatif bisa wajar tergantung konteks.
6. Diskusikan Hasil*
- Jelaskan dalam laporan bahwa nilai negatif ini hanya aspek matematis, bukan masalah praktis jika interpretasinya tetap logis.
Contoh Interpretasi
Jika penelitian Anda adalah tentang hubungan antara tingkat belajar siswa (*X*) dan keaktifan siswa (Y), dan Constant bernilai negatif, itu bisa diartikan:
- Ketika * bernilai nol (misalnya siswa tidak belajar sama sekali), maka keaktifan siswa diprediksi negatif.
- Meskipun secara praktis Y tidak bisa negatif, ini hanya mencerminkan hasil matematis dari regresi.
semoga membantu.
Bang boleh bertanya....pada saat saya uji regresi linier sederhana, pada tabel coefficients kolom t nilai t hitung > t tabel jadi ini dibaca berpengaruh atau tidak berpengaruh yah pak....
Dan sedangkan nilai signifikannya juga pak 0,699 < 0,05 berarti jika nilai signifikan lebih besar dari 0,05 dikatakan berpengaruh atau tidak berpengaruh...
Terimakasih pak semoga dibalas🙏
Berpengaruh kak
Kak izin bertanya🙏🏻
Jika hanya menggunakan variabel X dan Y dan variabel kontrol, masing-masing satu variabel itu menggunakan regresi berganda atau sederhana ya?
Terimakasih kak🙏🏻
Gunakan regresi berganda kak,
Namun Dicoba saja ke 2nya, nnti akan kelihatan hasilx 🙏
mas, izin bertanya. untuk hasil yang ANOVAnya diapakan mas? apakah yang dipakai hanya hasil dari gambar Model Summary dan Coefficient saja mas? terima kasih mas...
kak maaf mau tanya kalau variabel x itu respondennya 1 guru sedangkan variabel y itu responden 100 siswa maka make uji regresi apa ya ? untuk mencari pengaruh
Emang judul penelitianx apa kak?
Maaaf kak mau tanya, kalau pakai data hasil tes dan kuesioner siswa. Data kuesionernya harus uji validitas dan reliabilitas dulu ya baru bisa dipakai untuk regresi linier sederhana?
Iya betul kak
Terimakasih banyak kakk atas jawabannya, semoga kebaikan kakak jadi pahala untuk kakak dan keluarga 😭🙏
Aamiinn..
Sukses slalu kak
suka banget sama videonya kak, terimakasih banyak
Alhamdulillah..
Kak mau tanya, kalau uji regresi linier sederhana, pakai dua sampel (kontrol eksperimen) dan ada data post test pretest, lalu data yang di ujikan di SPss itu data apa aja ya? apa data angket dan posttest eksperimen aja apa gimana??
Penelitianya ttng apa kak?
@@EndaChannel ttng pengaruh pembelajaran berdiferensiasi terhadap peningkatan pemahaman konsep IPS kak, tolong pencerahannya :)
Variabel X dan Y, keduanya menggunakan pretest dan postest ya?
@@EndaChannel variabel X ada nilai hasil angket kelas eksperimen kak, variabel Y ada nilai post test pretest kelas eksperimen dan kontrol
Menggunakan Posttest dengan Pretest sebagai Kovariat kak.
Ini adalah metode alternatif yang sering digunakan dalam analisis data pretest-posttest, di mana posttest dijadikan variabel dependen dan pretest serta kelompok dijadikan variabel independen.Langkah-langkah di SPSS untuk Metode 2:Siapkan Data di SPSS:Data harus mencakup kolom untuk pretest, posttest, dan kelompok (0 untuk kontrol, 1 untuk eksperimen).Contoh Data:
| Pretest | Posttest | Kelompok |
|---------|----------|----------|
| 80 | 85 | 0 |
| 78 | 82 | 0 |
| 85 | 90 | 1 |
| 82 | 88 | 1 |
Analisis Regresi di SPSS:Langkah 1: Buka menu Analyze > Regression > Linear...
Langkah 2: Masukkan variabel Posttest sebagai variabel dependen (Dependent).
Langkah 3: Masukkan variabel Pretest dan Kelompok sebagai variabel independen (Independent).
Langkah 4: Klik OK untuk menjalankan analisis regresi.
Mengapa Menggunakan Pretest sebagai Kovariat?
Kontrol terhadap Variabilitas Awal: Dengan memasukkan pretest sebagai kovariat, kaka bisa mengontrol variabilitas awal di antara peserta, sehingga analisis lebih fokus pada pengaruh perlakuan terhadap perubahan dari pretest ke posttest.
Meningkatkan Akurasi: Ini bisa memberikan hasil yang lebih akurat karena mempertimbangkan skor awal masing-masing peserta.Interpretasi Hasil:Koefisien untuk Pretest: Menunjukkan seberapa besar nilai pretest mempengaruhi nilai posttest.Koefisien untuk Kelompok: Menunjukkan pengaruh perlakuan (kontrol vs eksperimen) pada nilai posttest setelah mengontrol nilai pretest.
Contoh Hasil:Jika koefisien Kelompok positif dan signifikan, ini berarti kelompok eksperimen (dengan perlakuan) memiliki skor posttest yang lebih tinggi dibandingkan kelompok kontrol, setelah mengontrol nilai pretest.
Assalamualaikum warahmatullahi wabarokatuh bg, ana mau nanya bg, klaw untuk uji regresi untuk hasil nya harus memenuhi 2 syarat tersebut atau salah satu saja yang di ambil bg? Mohon penjelasannya bg🙏
Sebaiknya harus ke duanya kak
Izin bertanya kak,kak hasil contanss 38,575 dapat dari mana?
Catatan itu dapet dari mana bang ? Kalo ada buku nya bisa spill buku yang lengkap berisi catatan itu😊
Catatanya sudah hilang kak🥺
Pak kalau variabel x nya nilai pretest dan postes, cara buatnya gimana, apa dimasukkan dua nilainya atau di apakan dulu?
Kalau mau pakai regresi berganda, nilai pretest dan postest bisa di jadikan sbgi variabel X. Pre test (x1) postest (x2).
Tapi balik lagi ke tujuan dan model penelitiannya kak!
@EndaChannel penelitiannya mengenai pengaruh model pembelajaran menggunakan regresi linier sederhana, nilai y di ambil dari nilai LKPD sedangkan nilai x di ambil dari nilai prites dan postes. Dalam penelitian ini hanya menggunakan 1 kls. Nah yang saya tidak paham cara netapin nilai x di uji regresinya bagaiman? Sedangkan x saya ada prites dan postes pak🙏
Bisa gunakan bbrapa pilihan ini kak:
1. Pilih satu yang paling sesuai
-Kalau fokus kaka adalah melihat pengaruh awal terhadap hasil, pakai nilai pretest sebagai X
-Tapi kalau ingin melihat hasil setelah intervensi (model pembelajaran), pakai nilai posttest sebagai X.
2. Hitung selisih (gain score)
selisih nilai posttest dan pretest (gain score)
3. Kalau kaka merasa dua-duanya penting, bisa ambil rata-rata nilai pretest dan posttest [(nilai pretest + nilai postest): 2
Kalau bingung pilih yang mana, jelaskan ke pembimbing kaka, karena ini tergantung tujuan spesifik penelitian kaka. Semangat! 🙌
@@EndaChannel terimakasih banyak pak untuk penjelasannya 🙏
Siap, sama2 kak.
Sukses !
Pak, kalau di hasil uji regresi di Model Summary hasil r square hanya 20an% apakah ada yang salah? Karena pengaruhnya sangat kecil
Jika koefisien determinasi (R²) rendah, misalnya hanya 20%, itu bukan berarti ada yang salah, tetapi menunjukkan bahwa variabel independen hanya menjelaskan 20% variasi variabel dependen. Sisanya 80% dipengaruhi oleh faktor lain di luar penelitian.
Saat sidang, kaka bisa menjelaskan:
- R² menunjukkan seberapa besar variabel X menjelaskan variabel Y.
- Nilai 20% berarti hubungan ada, tapi lemah. Sisanya bisa dipengaruhi oleh faktor lain yang tidak diteliti.
- Ini bukan kesalahan, tapi justru menunjukkan bahwa ada variabel lain yang mungkin lebih berpengaruh.
- Hasil tetap valid, dan ini bisa menjadi masukan untuk penelitian selanjutnya agar mempertimbangkan faktor lain.
Jadi, R² rendah bukan masalah, selama interpretasi hasilnya jelas dan logis.
@EndaChannel udah dijelasin gitu Pak, tapi penguji belum terima :(( makanya saya bingung
Mksud pengujix mungkin penjelasanya kurang lengkap kak!
@@EndaChannel penjelasan saya kurang lebih kok sama yang Bapak jelasin. Tapi kayaknya memang dosen penguji saya tuh memang fokusnya ke Kuali, bukan kuanti
@@EndaChannel Terima kasih ya Pak, sudah diberikan penjelasan
Kak izin bertanya, kalau misal judul pengaruh model pembelajaran discovery learnig terhadap kemampuan pemahaman matematis dan sel-efficacy siswa. Data yang diperoleh dari pretest dan posttest, bagaimana cara memasukan data ke dalam uji regresi tersebut? Karena ingin diketahui apakah ada pengaruh atau tidak dan seberapa besar pengaruh yang diperoleh🙏
Jika menggunakan rumus Y=a+bX+e, untuk a dan b nya dilihat dari data yg mana ya kak?
Persiapkan Data:
Pretest (X1): Nilai pretest siswa sebelum penerapan model pembelajaran Discovery Learning.
Posttest (Y1): Nilai posttest kemampuan pemahaman matematis siswa setelah penerapan model pembelajaran.
Self-efficacy Pretest (X2): Nilai self-efficacy sebelum penerapan model.
Self-efficacy Posttest (Y2): Nilai self-efficacy setelah penerapan model.
@@EndaChannel MasyaAllah terimakasih ka untuk penjelasannya 🙏🏼
Izin bertanya kembali kak, untuk urutan analisis data statistiknya apa saja ya ka?
Kebetulan rencana dari saya itu menggunakan normalitas, homogenitas, perbedaan dua rata-rata melalui uji t, dan effect size kak🙏🏼
@@EndaChannel saya diberi tugas untuk mencari tabel kriteria pengaruh, katanya untuk melihat seberapa besar pengaruhnya. Saya sudah berusaha mencari dan menemukan tabel koefisien determinasi, apakah koefisien determinasi juga bisa digunakan dalam penelitian tersebut ka?🙏🏼
iya, sangat bisa kak
sangat bisa kak, koefisien determinasi memang dirancang untuk itu.
Tabel Kriteria Pengaruh Berdasarkan R-squared
Tabel berikut menunjukkan kriteria pengaruh berdasarkan nilai R-squared:
Nilai R-squared (R²) | Kriteria Pengaruh
0 - 0.19 | Pengaruh sangat lemah
0.20 - 0.39 | Pengaruh lemah
0.40 - 0.59 | Pengaruh sedang
0.60 - 0.79 | Pengaruh kuat
0.80 - 1.00 | Pengaruh sangat kuat
Kak,izin bertanya jika koefisien arah regresi(x) dan t hitung bernilai negatif artinya bagaimana kak?
hallo kak, mau bertanya dengan pertanyaan yg sama apakah kakak sudah mendapatkan jawabannya? kalau bisa tolong dijawab kak
Jika koefisien regresi (β), variabel independen (X), dan t-hitung semuanya bernilai negatif, berikut adalah interpretasinya:
1. Koefisien Regresi Negatif (β): Menunjukkan bahwa ada pengaruh negatif antara variabel independen (X) dan variabel dependen (Y). Artinya, ketika nilai X meningkat, nilai Y cenderung menurun, dan sebaliknya.
2. Variabel Independen (X) Bernilai Negatif: Jika X itu sendiri bernilai negatif, maka ini menunjukkan bahwa data untuk variabel X dalam model regresi mencakup nilai-nilai negatif. Ini bisa terjadi jika X adalah variabel yang bisa memiliki nilai negatif (misalnya, perubahan pendapatan yang bisa positif atau negatif).
3. t-hitung Negatif:
t-hitung yang negatif menunjukkan bahwa arah pengaruh X terhadap Y adalah negatif. Namun, yang penting di sini adalah signifikansinya. Apakah t-hitung negatif tersebut signifikan secara statistik? Jika p-value < α (biasanya 0,05), maka pengaruh negatif ini .
Kesimpulan:
Gabungan dari koefisien regresi negatif, X yang negatif, dan t-hitung negatif mengindikasikan bahwa variabel X yang bernilai negatif memiliki pengaruh yang signifikan dalam menurunkan nilai variabel dependen Y. Ini menunjukkan hubungan yang kuat dan negatif antara X dan Y dalam konteks data yang sedang dianalisis.
Semoga membantu kak.
kak terimakasih banyak pembahasannyaa, izin bertanya kalo untuk t hitungnya minus itu gimana yaaa berarti ga berpengaruh kahh? soalnya liat dr tutor lain asal signifikansinya sesuai itu udh berpengaruh atau gimana yaa?
Kak mau tanya boleh, ini kan ada 35 data terus di kurang 2 , 2 itu dari mana ya?
@@melala6853bagian mn ya kak?
nitip kak
@@melala6853 kak maaf bgt br bales tp aku gatau lupa udh lama lulus🥲🙏
@@sherlyikaputri kalo hipotesis kakaknya "terdapat pengaruh a terhadap b" tulis aja berpengaruh secara signifikan kak walaupun tnya mines tp masih masuk ke dalem t tabel
pak, cara bedain hipotesis dua arah dengan satu arah gimana ya pak? kalo judul saya tentang pengaruh beban kerja terhadap kelelahan itu dua arah atau satu arah pak?
Hipotesis Satu Arah vs. Dua Arah
Hipotesis Satu Arah:
- Menyatakan hubungan dengan arah spesifik.
- Contoh: "Beban kerja yang lebih tinggi meningkatkan kelelahan."
Hipotesis Dua Arah:
- Menyatakan ada hubungan tanpa menentukan arah.
- Contoh: "Ada pengaruh beban kerja terhadap kelelahan."
Judul Kaka: "Pengaruh Beban Kerja terhadap Kelelahan"
- Jika: Kaka yakin beban kerja meningkatkan atau mengurangi kelelahan, itu satu arah.
- Jika: Kaka hanya yakin ada pengaruh tanpa menentukan arah, itu dua arah.
Contoh:
- Satu arah: "Beban kerja yang lebih tinggi meningkatkan kelelahan."
- Dua arah: "Ada pengaruh beban kerja terhadap kelelahan."
Kalo pengaruh model pbl terhadap hasil belajar ipas pada peserta didik kelas v sd masuknya kemana kak?
kak sebelum regrsi harus uji linieritas dan normalitas kan? itu salah satu aja atau wajib keduanya harus di uji dulu sebelum regresi?
Ada beberapa yg bilang wajib keduanya, dan ada jga yg salah stu saja.
Jdi trgantung dri peneliti mau pakai yg mna.
@@EndaChannel kak saya sudah uji linier sama normalitas kedua , selanjutnya uji valid dan uji deskriptif statistik perlu lg gak kak??
untuk lanjut ke regresi linier
Kalau pengumpulan datax menggunakan kuisioner, maka uji validitas dan reliabilitas itu wajib kak.
Namu jika pengumpulan data sebaliknya (bukan kuisioner), uji validitas dan reliabilitas ngga perlu.
Utk uji deskriptif statistik itu, tdak masuk uji prasayarat. Dia hanya sebatas menggambarkan keadaan data yg kita peroleh., jadi boleh di pakai dan jga tidak, namun lebih di sarankan utk di gunakan.
@@EndaChannelini terkahir kakk, di saat pengujian hipotesis di dapt nilai sig > 0.005 dan nilai t hitung < t- tabel tuh gmn kak?? berati variabel y tidak berpengarh dengan x ya kak?? maaf merepotkan kak terimakasihh banyakkk kak 😬😬😬
Pak, kalo uji heterokedastisitas juga bagian dr uji prasyarat uji linear sederhana gak?
Uji regresi sederhana tdk perlu menggunakan uji heteroskedastisitas kak.
@@EndaChannel baik kak. Di channel lain pake kak😭
@@jeckyl7931 sebenarnya, digunakan bisa dan tdk digunakan juga bisa, trgantung kakax sja mw pakai yg mana.
Ka mau tanya, kalo misal judulnya pengaruh model pembelajaran snowball throwing terhadap hasil belajar. Nah data yg diambil pretest dan posttest. Untuk dimasukkan ke dalam data di uji regresi ini apa ya ka?
Data ke2 nya kak, soalx kan akan dilihat perbedaan hasil penelitian sblm dan sesudah menggunakan model pembelajaran.
Kalau sampel penelitiannya ada 2 kelas (kontrol dan eksperimen) berarti hasil belajar pre dan post 2 kelas tersebut ya kak yg dipakai?
@@EndaChannelKak memakai data posttest ini merujuk siapa ya kak? Dosen saya mengharuskan mencantum rujukan dari jawaban ini😔🙏🏻 Kalau ada mohon bantuannya kak🙏🏻🙏🏻
ka tolong bikin video yang hasilnya negatif gimana, soalnya t hitung saya negatif dan x negatif
kalau t hitung dan koefisien regresi (x) sama-sama negatif, intinya begini:
- Hubungan antara variabel bebas (x) sama variabel terikat (y) itu berlawanan arah. Jadi kalau X naik, Y malah turun, atau sebaliknya.
Tapi, kaka mesti cek juga apakah hubungan ini signifikan atau nggak (lihat p-value atau bandingin sama t tabel). Kalau nggak signifikan, berarti hubungan ini cuma kebetulan aja dan nggak kuat secara statistik.
Contoh gampangnya gini: Kalau variabel X itu "jam tidur" dan Y itu "tingkat stress," terus hasil regresinya negatif, artinya makin banyak tidur, makin rendah stresnya atau sebaliknya.
Tapi ya, ini baru valid kalau hasilnya signifikan.
Gitu, kaka!
Smoga membantu
izin bertanya kak, untuk dasar pengambilan hipotesis itu bisa pilih salah satu?
Perumusan hipotesis (jawaban sementara) harusnya lebih dari 1 kak
Kak kalau misal variabel independentnya interval sedangkan variabel dependennya rasio apakah bisa. Atau haruskah sama rasio-rasio/interval-interval?
Ngga masalah kok kak..
Nnti kan akan di jelaskan pada hasilx penelitianx.
Kak izin bertanya jika data2 variabel di dapat bukan dari hasil kuisioner apakah kita harus uji validitas?
Iya betul kak, setelah lulus uji validitas dan reliabilitas trus lanjut ke uji regresi
Kak kalau nilai sig >0,05 dan t-hitung < t-tabel itu gimana ya kak? Mohon bantuannya kak
Brrti pengaruhnya ngga signifikan kak
Kak cara nya biar signifikan gimana ya@@EndaChannel
Jika hasil penelitian tidak signifikan, ada beberapa langkah yang bisa dilakukan untuk meningkatkannya:
Periksa Data dan Analisis Statistik - Pastikan tidak ada kesalahan input data dan gunakan uji statistik yang sesuai. Jika sampel terlalu kecil, pertimbangkan untuk menambah responden.
Evaluasi Instrumen Penelitian - Cek validitas dan reliabilitas angket atau tes yang digunakan agar benar-benar mengukur variabel yang diteliti.
Kendalikan Variabel Luar - Pastikan tidak ada faktor eksternal yang memengaruhi hasil, atau tambahkan variabel kontrol dalam analisis.
Gunakan Metode Analisis yang Tepat - Jika asumsi statistik tidak terpenuhi, coba alternatif uji lain yang lebih sesuai, seperti uji non-parametrik atau regresi berganda.
Perbaiki Desain Penelitian - Pastikan desain sudah tepat, misalnya dengan kelompok kontrol yang memadai dalam eksperimen.
Interpretasi Lebih Dalam - Cari pola dalam data yang mungkin bermakna secara praktis meskipun tidak signifikan secara statistik.
Jika masih perlu bantuan, kaka bisa bagikan detail lebih lanjut tentang hasil analisisnya.
@EndaChannel kakk kalo uji regresi variabel x si pbl nya ini hasil total point kuisoner apa rata rata nya kak yg di uji di rumus regresi bersama posttest?
Umumnya menggunakan skor total kak!
kak mau nanya, kalau dia skala likert gmn ya masukin ke spss?? ada video yg dari awal gak kak? yg dasar spss kalau skala likert uji regresi 2 variabel?
terima kasih kak
Nonton ini saja kak th-cam.com/video/ekj36wglnYU/w-d-xo.html
Bisa juga nonton mulai dari ini kak th-cam.com/video/TUHcpUR-hbQ/w-d-xo.html
Bg misal variabel x adalah sampel,dan y adalah hasil angket. Apakah bisa? Karma saya hanya menggunakan 1 angket untuk melihat hasil
Bisa bung..!
bang izin bertanya, jika variabel x nya interpretasi nilainya 40-240, sedangka variabel y nya 13-52, uji ini apakah masih relevan untuk dipakai? terimkasih.
Iya kak, variabel dengan rentang nilai yang berbeda tetap dapat digunakan dalam uji regresi. Namun, ada beberapa hal yang perlu diperhatikan untuk memastikan analisis regresi tetap valid dan hasilnya dapat diinterpretasikan dengan benar:
1. Skala Variabel:
Meskipun variabel (x) memiliki rentang nilai yang lebih besar (40-240) dibandingkan variabel (y) (13-52), ini tidak menghalangi penggunaan regresi. Namun, perbedaan skala ini dapat mempengaruhi interpretasi koefisien regresi.
2. Standarisasi:
Untuk mengatasi perbedaan skala, variabel dapat di-standardisasi (menggunakan z-score) atau dinormalisasi sehingga setiap variabel memiliki distribusi dengan mean 0 dan deviasi standar 1. Ini membantu dalam memahami kontribusi relatif dari setiap variabel.
3. Diagnostik Regresi:
Penting untuk memeriksa diagnostik regresi, seperti homoskedastisitas, normalitas residual, dan tidak adanya multikolinearitas. Hal ini memastikan model regresi memenuhi asumsi yang diperlukan.
4. Interpretasi Koefisien
Jika tidak di-standardisasi, koefisien regresi dari variabel dengan rentang yang lebih besar mungkin akan terlihat lebih besar hanya karena skala yang berbeda. Penting untuk memahami bagaimana perubahan satu unit dalam (x) mempengaruhi (y).
Secara keseluruhan, perbedaan rentang nilai antara variabel (x) dan (y) tidak membuat regresi menjadi tidak relevan. Yang penting adalah memastikan bahwa analisis dilakukan dengan mempertimbangkan skala dan interpretasi hasil regresi dengan tepat.
@@EndaChannel terimakasih untuk jawabannya bang🙏🏻, semoga sukses selalu🙏🏻
@@EndaChannel maaf bang, kalau boleh izin nanya tapi diluar konteks video, kalau untuk uji korelasi pearson dengan kasus yg sama (interpretasi nilainya berbeda jauh nilai minimal dan maksimalnya pada 2 variabel) apakah tetap bisa/relevan untuk uji korelasi pearson? Terimakasih🙏🏻
Iya kak, bisa dilakukan uji korelasi pearson, asal minimal ada teori/penelitian sebelumnya yg mendukung penelitian yg dilakukan.
Btw judul penelitianya ttng apa kak,? Smpai nilai X dan Y bedanya sangat jauh
@@EndaChannel kalau judul umum si kak, yg jomplang itu di interpretasi kuesionernya, jumlah pernyataan buat var x dan y beda juah, sama opsi jawaban ga sama, sebelumnya terimakasih kak
Kak kalo hasil sig²nya sama sama 0.00 gimna tu kak? Otomatis tidak berpengaruh kan ya kak?
Brpngaruh signifikan kak
@@EndaChannel jadi untuk uji regresi linear sederhana di lihat dari nilai b'a ya kak?
Iya kak
Untuk spssnya kita download dimana kak
Bisa download disini kak
drive.google.com/drive/folders/1JOARz8hb_yuC01JM7eyepu2BKqhEgTZU
izin pak jika t hitung constant bernilai negatif tetapi nilai sig 0.002 apakah tetap berpengaruh pak?
Iyaa..berpengaruh kak
pak izin bertanya, jika nilai R square nya 0,277 berarti hanya 27,7% x mempengaruhi y?
Iya benar skali kak👍
mau bertanya Pak, apabila hasil nilai konstanta (a) nya negatif artinya apa ya Pak? terima kasih🙏🏻
nilai konstanta atau koefisien regresi yang negatif dalam uji regresi menunjukkan adanya hubungan terbalik antara variabel yang diteliti, dengan asumsi semua variabel lain dalam model regresi dikendalikan atau tetap konstan.
@@EndaChannelmasih ga ngertii pakk😭
Konstanta Negatif:
Jika (a) negatif, misalnya -10, ini berarti bahwa tanpa adanya pengaruh dari variabel (X) (misalnya iklan, diskon, atau faktor lain yang diukur dengan (X)), variabel (Y) (misalnya penjualan, keuntungan, atau variabel lain yang diukur dengan (Y)) akan berada pada nilai negatif, seperti -10.
Contoh:
Misalkan persamaan regresi adalah: [ Y = -10 + 5X ]
Di sini:Jika (X = 0), maka (Y = -10).
Ini menunjukkan bahwa jika tidak ada pengaruh dari variabel independen (misalnya, tidak ada penjualan atau iklan), maka variabel dependen (misalnya, keuntungan) akan negatif, yakni rugi sebesar 10 juta rupiah.
pak izin bertanya, jika koefisien determinasi 0,180 berarti 18% boleh kan ya pak?? terima kasih🙏🏻
Boleh kak
@@EndaChannelbaik pak, terima kasih banyak🙏🏻
kak jadi ketiga tabel itu dimasukkan semua yah kak pada bab 4 hasil olah data ?
Iya kak
@@EndaChannel ohiya baik kak terima kasih🙏
mas B. 129 dan Sig . 082 itu gimana yaa? 🙏🏼
Berikut penjelasan singkat terkait nilai koefisien regresi (b) sebesar 129 dan nilai signifikansi (sig.) sebesar 0,082:
Koefisien Regresi (b = 129):Menunjukkan besarnya pengaruh variabel independen terhadap variabel dependeen . Artinya setiap kenaikan 1 unit pada variabel independen, variabel dependen akan bertambah 129 unit (dalam satuan yang relevan).
2. Nilai Signifikansi (sig. = 0,082):Biasanya dibandingkan dengan tingkat signifikansi (0,05), misalnya Karena 0,082 > 0,05, maka hubungan ini tidak signifikan secara statistik.Artinya, pengaruh variabel independen terhadap dependen kemungkinan terjadi secara kebetulan dan tidak cukup kuat untuk dianggap signifikan.
Kesimpulan:Meskipun pengaruhnya positif (b = 129), hubungan ini tidak signifikan secara statistik pada tingkat kepercayaan 95%. Mungkin perlu data lebih banyak, variabel tambahan, atau analisis lebih lanjut.
Semoga membantu kak.
Kak, kalau nilai R disamping R square itu koefisien korelasi?yg nilainya bisa berkisar -1 sampai 1?
Iya betul kak.
Untuk variabel X, Y dan Z apakah sama caranya?
Jika kaka memiliki:
Variabel bebas (X) → Faktor yang mempengaruhi
Variabel terikat (Y) → Hasil yang dipengaruhi oleh X
Variabel moderasi (Z) → Variabel yang memperkuat atau melemahkan hubungan X dan Y,
Maka metode analisis yang cocok adalah Regresi Moderasi, dengan beberapa pendekatan:
1. Moderated Regression Analysis (MRA) → Digunakan jika Z memperkuat atau melemahkan hubungan antara X dan Y. Biasanya dilakukan dengan menambahkan interaksi X*Z dalam regresi.
2. Analisis Jalur (Path Analysis) → Jika kaka ingin melihat hubungan langsung dan tidak langsung antara variabel.
3. Structural Equation Modeling (SEM) → Jika kaka memiliki data yang kompleks dan ingin melihat hubungan simultan antarvariabel.
Untuk uji hipotesis:
Gunakan Uji T atau ANOVA jika variabelnya kategorik.
Gunakan Uji Sobel jika ingin melihat efek mediasi/moderasi secara signifikan.
Permisi kak ada tabel data untuk ini tidak? Perlu untuk contoh materi
Datanya bisa dibuat sendiri kak..
Data yg saya pakai di video jga hanya contoh.
Kak mau tanya di bagian coefisien itu kok di hasilku bisa angkanya banyak ya kak sedangkan aku coba di laptop lain hasilnya desimal 3 angka
Disesuaikan saja angka di belakang komax kak..
Ka itu data awalnya angkanya didpt dr mana ya ka
Dari kuisioner yg di sebar ke responden kak
pak kalau x nya 4 apakah bisa menggunakan regresi sederhana?
Gunakan regresi berganda kak
Kak mau tanya itu kan ada 35 data, lalu 35-2 = 33 2 di situ dari mana ya ka
Udah ketentuanya kak, soalx kita berpatokan sama tabel koefisiennya
Izin bertanya, misalnya nilai coefficient regresinya negatif bagaimana ya interpretasinya?
Jika kaka mendapatkan nilai koefisien regresi yang negatif dalam sebuah model regresi, artinya terdapat hubungan negatif antara variabel independen (X) dan variabel dependen (Y).
Interpretasi Sederhananya:
- Ketika nilai X naik, nilai Y cenderung turun.
- Sebaliknya, ketika nilai X turun, nilai Y cenderung naik.
Semoga membantu kak!
@@EndaChannel terima kasih atas jawabannya🙏
Makasih pak kasus saya juga sama seperti itu 🙏 makasih sudah menjawab @@EndaChannel
Sama2 kak!
Bang cara bikin pie chart uji determinasi nya gimanaaaa
Dibuat seperti biasa kak, misal hasil koefisien determinasinya 0,75 (75%), jadinya kan sisanya 25% yg dipengaruhi variabel lain.
Jadi tabel yg dibuat:
75% dipengaruhi variabel X
25% dipengaruhi variabel lain
Kak, kalo sig nya 0,047 itu gimana ?
Kalau nilai signifikansi (p-value) hasil uji statistik kaka adalah 0,047, artinya hasil tersebut signifikan secara statistik pada tingkat signifikansi 5% (0,05). Ini berarti probabilitas bahwa hasil yang didapat adalah karena kebetulan saja adalah 4,7%, yang lebih kecil dari ambang batas 5%. Berikut adalah beberapa poin penting terkait hasil ini:
1. Interpretasi Hasil
- Karena p-value 0,047 lebih kecil dari 0,05, kaka bisa menolak hipotesis nol (H0). Ini artinya ada bukti yang cukup untuk mendukung hipotesis alternatif (H1).
2. Konteks Penelitian
- Pastikan bahwa hasil ini relevan dengan konteks penelitian kaka. Signifikansi statistik tidak selalu berarti signifikansi praktis, jadi pertimbangkan juga dampak atau efek praktis dari temuan ini.
3. Uji Lanjut
- Kalau ada beberapa uji yang dilakukan, pertimbangin buat melakukan koreksi untuk multiple comparisons, misalnya dengan metode Bonferroni, untuk menghindari hasil yang menyesatkan karena inflasi tingkat kesalahan.
4. Kekuatan Uji (Power)
- Pertimbangkan juga kekuatan uji statistik kaka (statistical power). Nilai p yang mendekati 0,05 bisa jadi menunjukkan uji dengan kekuatan yang kurang optimal. Mungkin perlu lebih banyak data atau sampel untuk memperkuat temuan.
Secara keseluruhan, nilai signifikansi 0,047 menunjukkan hasil yang signifikan pada tingkat 5%, jadi kaka bisa yakin bahwa hasil tersebut tidak muncul karena kebetulan. Tetap perhatikan konteks dan relevansi praktisnya dalam penelitian kaka.
pak maaf mau tanya, kalo nilai di kolom B itu negatif bagaimana ya?
Kolom b adalah Jika koefisien arah regresi negatif, ini menunjukkan bahwa ada hubungan negatif antara variabel independen dan variabel dependen dalam model regresi tersebut. Secara lebih spesifik:
1. Hubungan Negatif: Setiap peningkatan pada variabel independen akan diikuti oleh penurunan pada variabel dependen. Sebaliknya, jika variabel independen menurun, variabel dependen akan meningkat.
2. Interpretasi Koefisien: Nilai koefisien regresi negatif memberikan ukuran tentang seberapa besar penurunan yang terjadi pada variabel dependen untuk setiap unit peningkatan pada variabel independen. Misalnya, jika koefisien regresi adalah -2, maka untuk setiap peningkatan 1 unit pada variabel independen, variabel dependen diperkirakan akan menurun sebesar 2 unit.
3. Contoh: Jika kita memiliki model regresi yang memprediksi harga rumah berdasarkan jarak dari pusat kota, koefisien regresi negatif menunjukkan bahwa semakin jauh rumah dari pusat kota, semakin rendah harga rumah tersebut.
4. Penggunaan Praktis: Memahami tanda dan besarnya koefisien regresi penting dalam analisis data dan pengambilan keputusan, karena dapat memberikan wawasan tentang bagaimana variabel-variabel dalam model saling berhubungan.
Penting untuk memastikan bahwa hubungan negatif yang ditemukan bersifat masuk akal secara kontekstual dan didukung oleh teori atau logika bisnis, bukan hanya hasil dari kebetulan statistik.
@@EndaChannelapakah ada video yg menjelaskan dengan hasil negatif di kolom B pak?
Belun ada kak
@@EndaChannelpak mau tanya lagi , kalau t hitungnya negatif tp nilai sig nya 0,003 apakah tetap signifikan pak mohon bantuannya pak?
Iya betul.
Berpengaruh signifikan kak.
Ka mau t tabel rumusnya dong
Ini videonya kak th-cam.com/video/qsFbWkpAglA/w-d-xo.html
kak kok bisa nilai F aku cuman 0,067 dan nilai sig. 0,800
bisa tolong bantuin pencerahannya gak kak
Nilai F hitung kecil (0,067) dan sig. (0,800) itu tandanya variabel X nggak ngaruh signifikan ke Y. Mungkin datanya kurang pas, sampelnya kecil, atau ada variabel lain yang lebih ngaruh. Bisa juga uji statistiknya kurang cocok. Coba cek lagi data, tambah sampel, atau evaluasi modelnya, ya!
Smoga membantu kak!
@@EndaChannelaku bingung kak
sampel penelitian aku cuman sekitar 15 orang ajaa
statistik nya pun aku pake diagram lingkaran gitu kak
Sebenarnya kata dospem saya, syarat uji regresi ukuran sampelx minimal harus 30 kak. Kalau kurang dari itu mending pakai analisis saja.
@@EndaChannelbaikk kaka terimakasih udah jawab pertanyaan aku 🙏
Bang kalo hasilnya negatif gimna
Di jelaskan saja sesuai hasilnya kak
Kenapa meningkatkan satu satuan bang?
Penggunaan kalimatnya disesuaikan sja kak
@@EndaChannel dilihat dari mana sampai meningkat 1 satuan?🙏
Penelitianya ttng apa kak?
sumber belajar terhadap hasil belajar
Ý = 21.920 + 0.727 X
apakah karena hasilnya ples ?
Bang kalau nilai sig nya 0.006 gimana
Brrti berpengaruh signifikan kak
@@EndaChannel saya gagal fokus bang, saya kira 0.006 itu 0.060 haha
kak mau tanya, data di excel itu dapet dari mana
Itu di dapat dari akumulasi (penjumlahan) item2 pertanyaan per variabel yg ada pada kuisioner yg kita sebar pada responden kak
Gimana cara buat diagram nya paaaak😢
Gunakan insert kak, lalu pilih diagram😊
Terimakasih pak
Hallo Gan, klo variabel pengganggu (e) kenapa menjadi tidak ada?
Error term (epsilon) sangat penting dalam rumus regresi karena dia menangkap semua variasi atau perubahan pada (Y) yang nggak bisa dijelaskan oleh (X). Dia juga membantu kita memeriksa apakah model kita memenuhi beberapa aturan statistik penting, supaya hasilnya bisa dipercaya.
Tapi, saat kita menjelaskan hasil regresi, kita fokus pada hubungan antara (X) dan (Y) saja. Misalnya, kalau rumusnya (Y = 20 + 3X), kita lihat bahwa setiap tambahan satu unit X akan menambah (Y) sebesar 3 unit. Jadi, kita nggak perlu nyebut-nyebut error term saat menjelaskan hubungan ini, meskipun dia tetap ada di belakang layar untuk memastikan model kita valid.
Semoga membantu kak😊
Kak kalo sig nya 0.001 itu bagaimana?
Signifikan kak