Nice Math Olympiad Algebra Equation | How to Solve?

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 16

  • @sie_khoentjoeng4886
    @sie_khoentjoeng4886 2 วันที่ผ่านมา +4

    In fact, we have unlimited solution by make one variable as depend to another variable.
    Lets A is independent variable, then B=f(A). In this case, we can choose B=n×A or another equation.
    For exampke n=1 and B=1×A=A, then
    1/A+1/B=1/A+1/A=1/13
    2/A=1/13 or A=26, B=26
    n=2, B=2×A=2A
    1/A+1/B=1/A+1/2A=3/2A
    3/2A=1/13 A=39/2, B=39
    ....
    And so on..

  • @SrisailamNavuluri
    @SrisailamNavuluri 2 วันที่ผ่านมา +1

    a,b must be positive integers
    There are only 2 solutions since 13 is prime number.
    For real numbers there are many solutions.

  • @renesperb
    @renesperb 3 วันที่ผ่านมา +1

    If you solve the system for a you get b= 13 a/(a-13). Now you just plug in values for a in f(a) = a+ 13a /(a-13) to find
    natural numbers for a+b . This system has of course infinitely many solutions .

  • @ToanPham-wr7xe
    @ToanPham-wr7xe วันที่ผ่านมา +1

    😮

  • @NewsTopThe
    @NewsTopThe 2 วันที่ผ่านมา +3

    I just understand

  • @tomtke7351
    @tomtke7351 2 วันที่ผ่านมา

    1/a + 1/b = 1/13
    ab× (1/a + 1/b = 1/13)
    b + a = ab/13
    = (1/13)×(a)(b)

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 11 ชั่วโมงที่ผ่านมา

    (1/a)+(1/b)=1/13
    (a+b)/ab=1/13
    [k(a+b)]]/kab=1/13; k≠0
    k(a+b)=1
    kab=13
    when k=1,
    a+b=1 =>b=1-a
    ab=13
    a(1-a)=13
    a-a²=13
    a²-a+13=0
    ♤=-51
    ♤½=i(51½)
    a = (1/2)+[±i(51½)/2]
    b = (1/2) -[±i(51½)/2]
    ka= kr + ks*z
    when k=1
    r=(1/2)
    s=i(51½)/2
    the same for b:
    kb= ku - kv*z
    when, k=1
    u=(1/2)
    v=-i(51½)/2
    u=r =1/2
    s=-v = i(51½)/2
    =>a= ku+kv*z
    when, k=1
    a+b=1
    (u+vz)+(u-vz)=1
    2u=1
    2(1/2)=1
    1=1. ok
    ab=13
    (u+vz)(u-vz)=13
    u²-(vz)²=13;
    u²=(1/2)²=(1/4)
    (vz)²= v²z²= v²(-1)= -v²= -[(51½)/2]²
    => (vz)²= -51/4
    ab=13
    (u+vz)(u-vz)=13
    u²-(vz)²=13
    (1/4) -(-51/4)=13
    (1/4)+(51/4)=13
    (1+51)/4=13
    52/4=13
    26/2=13
    13=13. ok
    a=ku + kvz
    b=ku - kvz
    then,
    the anwser is:
    k € Z, k ≠0 and:
    a=k/2 + ki√(51/4)
    b=k/2 - ki√(51/4)

  • @MorgKev
    @MorgKev 8 ชั่วโมงที่ผ่านมา

    Where does it say they must be whole numbers?

    • @sillyjajsksnsj
      @sillyjajsksnsj ชั่วโมงที่ผ่านมา

      on the screen

    • @olegzorin7568
      @olegzorin7568 58 นาทีที่ผ่านมา

      nowhere

  • @walterwen2975
    @walterwen2975 2 วันที่ผ่านมา

    Nice Math Olympiad Algebra Equation: 1/a + 1/b = 1/13, a, b > 0; a + b =?
    1/a + 1/b = (a + b)/(ab) = 1/13, 13(a + b) = ab, 13 is a prime number
    1/13 > 1/a ≥ 1/b > 0, b ≥ a or 1/13 > 1/b ≥ 1/a > 0, a ≥ b
    b = a; 13(a + b) = 26a = a², a² - 26a = a(a - 26) = 0, a > 0, a - 26 = 0; a = 26 = b
    a + b = 26 + 26 = 52
    b > a; a, b must be multiple integers of 13; Let: b = 13a, a ϵ ℤ
    13(a + 13a) = 13(14a) = ab = 13a², a(a - 14) = 0, a - 14 = 0; a = 14, b = 13(14) = 182
    a + b = 14 + 182 = 196
    a > b; Let: a = 13b, b ϵ ℤ
    13(13b + b) = 13(14b) = ab = 13b², b(b - 14) = 0, b - 14 = 0; b = 14, a = 13(14) = 182
    a + b = 182 + 14 = 196
    Answer check:
    a = b = 26: 1/a + 1/b = 1/26 + 1/26 = 2/26 = 1/13; Confirmed
    a = 14, b = 182; a = 182, b = 14:
    a + b = 1/14 + 1/182 = 1/182 + 1/14 = (1/14)(14/13) = 1/13; Confirmed
    Final answer:
    a + b = 52 or a + b = 196

    • @Patrik6920
      @Patrik6920 2 วันที่ผ่านมา +2

      nothing say neither a or b must be a whole number .. this is one soultion ..
      1/a+1/b = 1/13 ->
      (a+b)/ab = 13/13^2 ->
      a+b=13, ab=13^2 ... √a * √b = 13 .. infinite many solutions

  • @ToanPham-wr7xe
    @ToanPham-wr7xe วันที่ผ่านมา

    😮