Nice Math Olympiad Algebra Equation | How to Solve?

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ธ.ค. 2024

ความคิดเห็น • 258

  • @aakarshkumar845
    @aakarshkumar845 23 วันที่ผ่านมา +42

    I dont think its mentioned anywhere that a and b belongs to integers. Only thing it states is that a,b>0 which means they are positive and therefore can exist as positive real nos. too. Sure, they are the only valid "whole" no. Solutions. But there are infinite solutions here. We cant solve this until the question states that a,b belongs to natural numbers

    • @sachuvan
      @sachuvan 22 วันที่ผ่านมา +6

      That is trick of youtuber, they intentionally forget it, so viewer will make comments, their video will have more interaction

    • @aakarshkumar845
      @aakarshkumar845 21 วันที่ผ่านมา +2

      @@sachuvan makes sense. It's their source of income after all

  • @dmmarks
    @dmmarks หลายเดือนก่อน +150

    1/13 = 2/26 so 1/26 + 1/26 = 2/26 so a and b are both 26 so a+b = 52

    • @roulam3001
      @roulam3001 หลายเดือนก่อน +17

      You can't assume the values of a or b this way. Fractions are ratios. (1/13)=(2/26)=(4/52)...
      Why did you also assume that a=b when it clearly doesn't state this?

    • @Payi_1
      @Payi_1 หลายเดือนก่อน +41

      @@roulam3001 it doesnt say anywhere that a and b cant be equal

    • @demoman1596sh
      @demoman1596sh 29 วันที่ผ่านมา +14

      @@roulam3001Obviously a+b=52 is a potential solution here and can be checked to be correct. However, as we saw in the video, it isn’t the only solution.

    • @galaxiesbetweenus
      @galaxiesbetweenus 29 วันที่ผ่านมา +4

      The idea of this question is there is not only one answer. With your way of solving this question, it is hard to find other answers.

    • @pawel8925
      @pawel8925 29 วันที่ผ่านมา +12

      You can’t also assume that both numbers are integer. There is no such claim in the beginning so the whole video solution is wrong 😎

  • @danikochman1351
    @danikochman1351 หลายเดือนก่อน +14

    1) a=b. 1/a+1/a=1/13. a=26. b=26. a+b=52. 2)1/a+1/b=1/13. 13(a+b)=ab. 13a=ab-13b. 13a=b(a-13). b=13a/(a-13). a-13=1. a=1+13=14. b=13a/1=13X14/1=182. a+b=196.

    • @Zj-Aka
      @Zj-Aka 29 วันที่ผ่านมา +4

      " b=13a/(a-13). a-13=1." Why a- 13= 1 ?

  • @sie_khoentjoeng4886
    @sie_khoentjoeng4886 หลายเดือนก่อน +46

    In fact, we have unlimited solution by make one variable as depend to another variable.
    Lets A is independent variable, then B=f(A). In this case, we can choose B=n×A or another equation.
    For exampke n=1 and B=1×A=A, then
    1/A+1/B=1/A+1/A=1/13
    2/A=1/13 or A=26, B=26
    n=2, B=2×A=2A
    1/A+1/B=1/A+1/2A=3/2A
    3/2A=1/13 A=39/2, B=39
    ....
    And so on..

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  หลายเดือนก่อน +4

      @@sie_khoentjoeng4886 Nice Approach 👍

    • @paradox2152
      @paradox2152 หลายเดือนก่อน +2

      It has infinite solutions.
      1/a + 1/b = 1/13
      1/a = 1/13-1/b
      a>0, =>1/a >0, => 1/13 - 1/b >0
      => b>13
      ||rly a > 13
      a>13 and b >13
      Hence take any value of a or b greater than 13,.put in the first equation and get the value of other variable

    • @БелАлекс
      @БелАлекс 27 วันที่ผ่านมา +7

      Я думаю в условии оригинальной задачи было упоминание, что корни должны быть целые, но автор ролика решил умолчать об этом факте.

    • @АлексейБигвава
      @АлексейБигвава 14 วันที่ผ่านมา

      ​@@БелАлексСогласен. Даже по ролику видно , что в условии было упоминание , что решение должно быть в целых числах. В противном случае 169 можно разложить на множители чуть ли не бесконечным количеством пар.

    • @МиколаДзядук
      @МиколаДзядук 8 วันที่ผ่านมา

      ​@@БелАлекса=1/(1/13-1/b), где b любое не равное 0 число, в том числе комплексное.
      Количество решений бесконечно.

  • @זאבגלברד
    @זאבגלברד หลายเดือนก่อน +13

    You can multiply both sides by 13ab and get 13b+13a=ab right away. Thank you for the video. Nice.

  • @ffggddss
    @ffggddss 27 วันที่ผ่านมา +26

    From the thumbnail and the opening frame of the video, there's an easy, obvious answer: a = b = 26; a + b = 52.
    The problem becomes interesting only when a couple conditions are imposed, neither of which is stated in either of those 2 places:
    a ≠ b; a,b ∈ ℤ
    i.e., that a & b are unequal integers. Or, that the problem is to find all (positive) integer solutions.
    Or maybe we're just supposed to find all positive solutions.
    1/a + 1/b = 1/13
    Solve for b in terms of a:
    1/b = 1/13 - 1/a
    b = 1/(1/13 - 1/a) = 13/(1 - 13/a) = 13a/(a - 13)
    which has infinitely many real positive solutions; for all of them, a & b are both > 13.
    Fred

    • @wildfire_
      @wildfire_ 26 วันที่ผ่านมา +2

      Yeah, there’s sort of an assumed set of conditions that aren’t stated in the video:
      1. a&b are both integers
      2. The question is to find all solutions
      At the started, it’s stated that a & b are positive (>0) so i don’t count that one as a mistake.
      One of the written solutions is such that both values are 26, so a can clearly equal b.

    • @aBradApple
      @aBradApple 22 วันที่ผ่านมา

      I am really glad you posted this reply because I really thought I was stupid for not working the problem exactly like the video. I also chose to put b in terms of a at first as that is how I was taught to deal with multivariable equations. Anyway, this reminds me that it's OK to think outside the box and experiment with other methods so long as I maintain the relationships.

  • @HagenvonEitzen
    @HagenvonEitzen 29 วันที่ผ่านมา +14

    Anyone who repeats the calculation for case-02 instead of just invoking symmetry, or who repeats the lengthy calculations that turn a-13=13 into a=26 to find that b-13=13 leads to b=26, deserves some severe punishment…

    • @TomatoBlues
      @TomatoBlues 14 วันที่ผ่านมา

      Its because of folks like you that kids struggle with math.

    • @TaliaButton
      @TaliaButton 10 วันที่ผ่านมา

      Even without it, and played on double speed, it just drags on. Not fun drag in this case. 😁

  • @jim2376
    @jim2376 หลายเดือนก่อน +7

    If a and b are integers and a = b, the problem is trivial: 1/26 + 1/26 = 1/13, in the same way that 1/4 + 1/4 = 1/2, etc.
    Continuing with integers, use this formula for 1/a + 1/b = 1/c, which is 1/(a + 1) + 1/((a +1)(c)) = 1/c
    1/(13 + 1) + 1/((13 + 1)(13)) = 1/13
    1/14 + 1/182 = 1/13
    (Obviously, the commutative property applies.)
    Try the formula on 1/a + 1/b = 1/5.
    I stumbled into this formula through empirical observation. A formal proof of the formula, assuming it exists, is beyond my math skills.
    If someone has a proof, please share it.

    • @dinnybam2057
      @dinnybam2057 หลายเดือนก่อน +4

      Nice! Yes in the trivial case, 1/c =1/c(1/2 + 1/2) = 1/2c + 1/2c so let a=b=2c. In the other two cases (both the same except a and b swap values like you mentioned), 1 = (c^2+c) / (c^2+c) ( since we know c > 0)
      = (c(c+1) / (c^2+c)). Then multiplying both sides by 1/c, 1/c = c+1 / (c^2+c) = (c / (c^2+c)) + (1 / (c^2+c)) = 1/(c+1) + 1/(c(c+1)). Since c is an integer, c+1 and c(c+1) are integers so let a = c+1 and b = c(c+1).

    • @Zj-Aka
      @Zj-Aka 29 วันที่ผ่านมา +1

      @@dinnybam2057 Well done.

    • @dinnybam2057
      @dinnybam2057 28 วันที่ผ่านมา +1

      @@Zj-Aka thanks:)

  • @SrisailamNavuluri
    @SrisailamNavuluri หลายเดือนก่อน +6

    a,b must be positive integers
    There are only 2 solutions since 13 is prime number.
    For real numbers there are many solutions.

  • @johannesannema8692
    @johannesannema8692 2 วันที่ผ่านมา +1

    Nice

  • @MorgKev
    @MorgKev หลายเดือนก่อน +23

    Where does it say they must be whole numbers?

  • @yawninglion
    @yawninglion 25 วันที่ผ่านมา +8

    This is so painful to watch

  • @renesperb
    @renesperb หลายเดือนก่อน +10

    If you solve the system for a you get b= 13 a/(a-13). Now you just plug in values for a in f(a) = a+ 13a /(a-13) to find
    natural numbers for a+b . This system has of course infinitely many solutions .

    • @bertblankenstein3738
      @bertblankenstein3738 29 วันที่ผ่านมา +1

      Don't forget that a > 0 and b > 0.

    • @MrZzstop
      @MrZzstop 27 วันที่ผ่านมา +1

      You are correct that a+b=a+ 13a /(a-13). But if we are only working with positive integers for a and b then we need 13a to be divisible by a-13 to avoid fractions. I only see 2 solutions, a=14 and a=26.

  • @antonioatt
    @antonioatt หลายเดือนก่อน +2

    This can be solved very fast in this way: 13(a+b)=a*b -->a=13b/(b-13) --> case 1) a is integer if b-13=1 => b=14 , a=182=>a+b=196
    case 2) b-13=13k=>a=13(k+1)/k=>that is integer only with k=1 => a=26,b=26=>a+b=52

    • @MrZzstop
      @MrZzstop 27 วันที่ผ่านมา

      Very good. For case 1) you are using that b-13 is a factor of 13 => b=14.

  • @michaelpurtell4741
    @michaelpurtell4741 23 วันที่ผ่านมา +1

    13 prime and if a and b integers then ab/13 implies either or both divisible by 13 so set A =n13 then 13nb/13=13n+b solve for b; b=13*(n/n-1) …n/(n-1) integer if n=2 A=2*13 =26 and from original
    equation b also 26 A+B=26
    Also if n=14 then 13*(14/13)=14 so b=14 and a= 182 A+B=196

  • @kumarumang4127
    @kumarumang4127 24 วันที่ผ่านมา +1

    There is a simple general expression for this, was commonly asked in the exam CAT which i am preparing. A/x+B/y=1/C => (x-AC)(y-BC)=ABC². One can easily change the reciprocal form into factors.

  • @Crazy_mathematics
    @Crazy_mathematics 13 วันที่ผ่านมา

    Infinite solutions of a,b as a,b>0 and belongs to Real numbers
    If a+b=S then,
    For all 0

  • @leoargentino5409
    @leoargentino5409 25 วันที่ผ่านมา +1

    The equation Y^2-XY+13X=0, with every X equal or higher than 52, admits solutions Ymin(X)>0 and Ymax(X)>0 (with Ymin

  • @thecopyninjakakashihatake
    @thecopyninjakakashihatake 16 วันที่ผ่านมา +2

    let 1/a=x(just to check)
    1/b=x
    x+x=1/13
    or,2x=1/13
    or,x =1/26
    1/a=1/b=1/26
    a+b=26+26=52😅

  • @ramoncedillof
    @ramoncedillof 28 วันที่ผ่านมา +7

    La condición inicial no especifica que A y B sean enteros. Solo se estableció que sean positivos. Al no hacerlo, existen infinitas soluciones.

  • @vintw
    @vintw 26 วันที่ผ่านมา +4

    13*(a+b) = a*b
    In generally, we can let a=13*n, where n is Nature Num
    13*(13*n+b) = 13*n*b
    13*n+b = n*b
    b = n*13/(n-1) is integer
    n = 2 or 14
    a+b = 52 or 196

    • @RR-bs9mr
      @RR-bs9mr 25 วันที่ผ่านมา

      yeah thast what I I did as we can see eiher 13 divides b or 13 divdes a

  • @phungcanhngo
    @phungcanhngo 2 วันที่ผ่านมา

    Thank you professor for good solution.

  • @francescocappello9067
    @francescocappello9067 6 วันที่ผ่านมา +1

    Beautiful

  • @AngelSeco-ff8uk
    @AngelSeco-ff8uk 5 วันที่ผ่านมา +1

    b = (n + square root from n to the second degree - 52n) : 2, n is 52 or any another higher number

  • @Crazy_mathematics
    @Crazy_mathematics 13 วันที่ผ่านมา

    S=b²/b-13 proof
    1/a + 1/b = 1/13
    Therefore
    a=13b/b-13
    And also
    (a+b)=s= ab/13
    = b*(13b/(b-13))/13
    = b²/b-13
    Define a valid domain observing a,b
    Therefore b belongs to (0,13)....

  • @NewsTopThe
    @NewsTopThe หลายเดือนก่อน +9

    I just understand

  • @oida10000
    @oida10000 27 วันที่ผ่านมา +1

    1/a+1/b=1/13 | -1/a
    1/b=1/13-1/a=(a-13)/(13a) | 1/y
    b=(13a)/(a-13)
    a+b=
    a+(13a)/(a-13)=
    (a^2-13a)/(a-13)+(13a)/(a-13)=
    a^2/(a-13)

  • @napoleonjr.gaquing379
    @napoleonjr.gaquing379 20 วันที่ผ่านมา +1

    Another and shorter solution 1/13=(1+13)/13(1+13)=(1/13×14)+ (13/13×14)=(1/182)+ (1/14). Therefore, a+b=196.

  • @гонивискас
    @гонивискас 28 วันที่ผ่านมา +6

    Система. а+b=1
    ab=13

    • @kateknowles8055
      @kateknowles8055 19 วันที่ผ่านมา

      Which two numbers multiply to 13 and add to 1??? They do not exit as real numbers.
      They can not both be positive . They can not both be negative. So their product cannot be greater than zero. So no real pair of numbers can be a and b if a+b=1 AND ab=13

  • @ManojkantSamal
    @ManojkantSamal 24 วันที่ผ่านมา +1

    Nice.....

  • @lucatherine4089
    @lucatherine4089 22 วันที่ผ่านมา

    a + b = a b/13,
    ① a + 26 = 2a ⇒ 26 + 26 = 52 = a + b 👈
    ② a + 39 = 3a ⇒ 19½ + 39 = 58½
    ③ a + 52 = 4a ⇒ 17⅓ + 52 = 69⅓
    ④ a + 65 = 5a ⇒ 16¼ + 65 = 81¼
    ⑤ a + 78 = 6a ⇒ 15+3/5 + 78 = 93+3/5
    a + 182 = 15a ⇒ 14 + 182 = 196 = a + b 👈
    1/26 + 1/26 = 1/13 ⇒ a + b = 52
    1/14 + 1/182 = 1/13 ⇒ a + b = 196
    Should have started with 1/14 + 1/b = 1/13 👈

  • @gilsonbuckoskigoncalves1954
    @gilsonbuckoskigoncalves1954 8 วันที่ผ่านมา +1

    a=12 and b=-153 is another solution finally a+b= -141

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  7 วันที่ผ่านมา

      Brilliant approach SIR
      Are you a teacher by profession 😊

  • @nicolasregulus555
    @nicolasregulus555 23 วันที่ผ่านมา +1

    If a or b are not necesserly integers, the equation gives us :
    a=13b/(b-13)
    So a+b=b²/(b-13), so it's not constant and might take any value smaller than 0 or higher than 676...

  • @SAGAR-e1q
    @SAGAR-e1q 9 วันที่ผ่านมา

    If a,b is an integer , than you don't need any special procedure, you can take a= 14,15,16... anything then find b or vice-versa. if a.b is not an integer given in question then its a good approach.

  • @tomtke7351
    @tomtke7351 หลายเดือนก่อน +2

    1/a + 1/b = 1/13
    ab× (1/a + 1/b = 1/13)
    b + a = ab/13
    = (1/13)×(a)(b)

  • @maths01n
    @maths01n 29 วันที่ผ่านมา +1

    Good work ❤

  • @قدرتاللاهعظیمیعلمداری
    @قدرتاللاهعظیمیعلمداری 15 วันที่ผ่านมา +1

    As great , thank you , we enjoyed it .

  • @khundeejai7945
    @khundeejai7945 23 วันที่ผ่านมา

    1/a+1/b=1/13 we get 1/a=1/13-1/b = (b-13)/13b or a = 13b/(b-13) = 13+169/(b-13) for divisibility it's obvious that b-13=1,13,169 and get a =13+169, 13+13, 13+1 so a+b=13+1+13+169=196, 13+13+13+13=52, 13+169+13+1=196.

  • @K2H-smart
    @K2H-smart 20 วันที่ผ่านมา +1

    13(a+b)=ab, (a+b)>= 2✔️ab
    (a+b)²/4>=ab =>> (a+b)²/4>=13(a+b) => (a+b)/4 -13=0 => a+b=13x4=52

    • @K2H-smart
      @K2H-smart 20 วันที่ผ่านมา

      sẽc a=-b

  • @汪韬
    @汪韬 4 วันที่ผ่านมา +1

    x/13+y/13=1/a+1/b x+y=1 x/13=......

  • @taosong1970
    @taosong1970 20 วันที่ผ่านมา +1

    1/n=1/n+1+1/n(n+1) 1/13=1/13+1+1/13(13+1) 1/13=1/14+1/182 14+182=196

  • @dneary
    @dneary 28 วันที่ผ่านมา

    Multiplying by 13ab, you can rewrite as (a - 13)(b - 13) = 169 - two solutions: a=b=26, a=14, b=182

  • @v.volynskiy
    @v.volynskiy 28 วันที่ผ่านมา +5

    Опять раскладываем только на целые множители. Где это оговорено?

    • @testuser-u8m
      @testuser-u8m 22 วันที่ผ่านมา

      Нигде. Восточная хитрость.

  • @Lalitsryalsar
    @Lalitsryalsar 49 นาทีที่ผ่านมา +1

    Two variables in one equation can not be solved separately.🎉🎉

  • @EMC.EXPER.100
    @EMC.EXPER.100 7 วันที่ผ่านมา

    Kya ye Olympiad ka question hai bhai. Such an interesting question

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  7 วันที่ผ่านมา

      Pta nhi bhai🫣 Olympiad ha yaa ni.
      But yes its interesting 🙂

  • @ABCMarkerFromTPOT
    @ABCMarkerFromTPOT 29 วันที่ผ่านมา

    If 1/a +1/b = 1/3, what is a+b?
    Well, 1+1=2, so this is a simplified fraction, so that means we have to multiply 13 by 2 which we get 26.
    Which means that: 1/26 + 1/26= 2/26=1/13
    Which means that a and b are both equal to 26, meaning that a+b=52

  • @lopesdareosa
    @lopesdareosa 11 วันที่ผ่านมา +2

    a+b=1

  • @adarshkar4529
    @adarshkar4529 29 วันที่ผ่านมา +17

    Why u r doing complicated things, it can be solved by just simple observation... We can clearly see That a=b=26, 1/26+1/26=1/13. There fore, a+b=52 👍

    • @bobh6728
      @bobh6728 28 วันที่ผ่านมา +3

      👎🏽 Clearly that is not the only answer.

    • @adarshkar4529
      @adarshkar4529 28 วันที่ผ่านมา +2

      @bobh6728 then give more answers👍

    • @Anime-sy2tw
      @Anime-sy2tw 28 วันที่ผ่านมา +1

      @@bobh6728 Obviously, the video doesn't have all the answers either, just a few random ones.

    • @swolf2004
      @swolf2004 26 วันที่ผ่านมา +1

      Actually, the video is missing infinitely many answers.

    • @bobh6728
      @bobh6728 26 วันที่ผ่านมา +2

      @@adarshkar4529 196, from a, b being 32 and 164.

  • @laplacia
    @laplacia 20 วันที่ผ่านมา +1

    You can do it in your head. W.L.O.G you can set a = b and sould get the same answer. Then you can get a = b = 26.

  • @adarshgupta8215
    @adarshgupta8215 28 วันที่ผ่านมา +1

    Bro really knows how to make a clickbait out of easy problems 🤣

  • @汪韬
    @汪韬 4 วันที่ผ่านมา +1

    0.5/13+0.5/13=1/a+1/b

  • @ioannisimansola7115
    @ioannisimansola7115 17 วันที่ผ่านมา +1

    A rather guessworking without a real generic value

  • @panlomito
    @panlomito 27 วันที่ผ่านมา

    I first changed the equation in a + b = ab / 13 looked at it for some time asking what if a = b? Then you get
    2a = a.a / 13 so 2 = a / 13 and a = b = 2 . 13 = 26 Check: 1/26 + 1/26 = 2/26 = 1/13 !
    So the answer is: a + b = 52

  • @flummer7
    @flummer7 27 วันที่ผ่านมา +1

    in about 5 seconds 1/26 + 1/26 = 2/26 = 1/13. Fast forward 10 mins in the video oh that was correct.
    How did that take 10 mins ?

  • @clympsarchery
    @clympsarchery 29 วันที่ผ่านมา +1

    easiest solution: a = 13, b = infinity

    • @dinnybam2057
      @dinnybam2057 28 วันที่ผ่านมา

      @@clympsarchery that is only the case for the limit as x approaches infinity of 1/x. 1/infinity is undefined.

    • @aqlimursadin5948
      @aqlimursadin5948 28 วันที่ผ่านมา

      Wrong

    • @clympsarchery
      @clympsarchery 27 วันที่ผ่านมา

      @@aqlimursadin5948 nope. 1/infinity = 0. 0 + 1/13 = 1/13 duh

    • @clympsarchery
      @clympsarchery 27 วันที่ผ่านมา

      @@dinnybam2057 its undefined so i define it as 0 🤣🤣

  • @mareoio4141
    @mareoio4141 21 วันที่ผ่านมา +1

    I got 52

  • @surawutch
    @surawutch 28 วันที่ผ่านมา

    1/a + 1/b = 1/13
    1/a = 1/13 - 1/b
    1/a = (b-13) / 13b
    then
    1 = b-13 and. a = 13b
    b = 14 , a = 182

    • @alexpo7804
      @alexpo7804 27 วันที่ผ่านมา

      Нельзя так приравнивать дроби. Вы теряете другие значения. Например: a/b = 2/5. По вашей логике a=2, b=5, но это не так a=2, 4,6,8.... b=5,10,15,20...
      Вот и в разобранном уравнении вы потеряли значения a=26 b=26.

  • @kubapopawski4934
    @kubapopawski4934 28 วันที่ผ่านมา +1

    You could say it was diophantine equation

  • @oneli8492
    @oneli8492 21 วันที่ผ่านมา

    n=ab,a+b≡1,1是一个示性数,也即:a+b可以等于任何数N,与n等于多少无关。

  • @mindalkwon1267
    @mindalkwon1267 7 วันที่ผ่านมา

    In Korea, indefinite equation learned in the first year of high school. Easy~😊

  • @3DuArt-08
    @3DuArt-08 28 วันที่ผ่านมา +1

    My first thought was a+b = (a*b)/13 and that's it

  • @larrypatterson3957
    @larrypatterson3957 28 วันที่ผ่านมา +1

    A lot of work here. Explain why this isn’t so: 1/a+1/b=1/13, combining fractions b+a/ab=1/13. Numerator: a+b=1 Denominator: ab=13. Why isn’t a+b =1 as shown in numerator?

    • @anastasissfyrides2919
      @anastasissfyrides2919 28 วันที่ผ่านมา +1

      Thats not exact as a way if thinking because two fractions can be equal without necessitating any of their terms to be equal, ie 1/2 and 3/6. What is necessary for a/b=c/d is ad=bc and that is how you solve this

    • @larrypatterson3957
      @larrypatterson3957 28 วันที่ผ่านมา +1

      @ Thanks. Makes sense.

  • @cyruschang1904
    @cyruschang1904 21 วันที่ผ่านมา

    1/a + 1/b = 1/13
    a + b = ab/13
    a = b = 26

  • @ภพภูมิ-ผ8ฌ
    @ภพภูมิ-ผ8ฌ วันที่ผ่านมา +2

    How to know to add 169

  • @fernandobarrera4569
    @fernandobarrera4569 19 วันที่ผ่านมา +1

    The given solution cheats, since it never said that a and b are integers. If a is given, then b=13a/(a-13) and both are positive for a>13. If you are searching for integral solutions, then from the equation b(a-13)=13a you get the solutions by using divisibility criteria.

  • @walterwen2975
    @walterwen2975 หลายเดือนก่อน +3

    Nice Math Olympiad Algebra Equation: 1/a + 1/b = 1/13, a, b > 0; a + b =?
    1/a + 1/b = (a + b)/(ab) = 1/13, 13(a + b) = ab, 13 is a prime number
    1/13 > 1/a ≥ 1/b > 0, b ≥ a or 1/13 > 1/b ≥ 1/a > 0, a ≥ b
    b = a; 13(a + b) = 26a = a², a² - 26a = a(a - 26) = 0, a > 0, a - 26 = 0; a = 26 = b
    a + b = 26 + 26 = 52
    b > a; a, b must be multiple integers of 13; Let: b = 13a, a ϵ ℤ
    13(a + 13a) = 13(14a) = ab = 13a², a(a - 14) = 0, a - 14 = 0; a = 14, b = 13(14) = 182
    a + b = 14 + 182 = 196
    a > b; Let: a = 13b, b ϵ ℤ
    13(13b + b) = 13(14b) = ab = 13b², b(b - 14) = 0, b - 14 = 0; b = 14, a = 13(14) = 182
    a + b = 182 + 14 = 196
    Answer check:
    a = b = 26: 1/a + 1/b = 1/26 + 1/26 = 2/26 = 1/13; Confirmed
    a = 14, b = 182; a = 182, b = 14:
    a + b = 1/14 + 1/182 = 1/182 + 1/14 = (1/14)(14/13) = 1/13; Confirmed
    Final answer:
    a + b = 52 or a + b = 196

    • @Patrik6920
      @Patrik6920 หลายเดือนก่อน +3

      nothing say neither a or b must be a whole number .. this is one soultion ..
      1/a+1/b = 1/13 ->
      (a+b)/ab = 13/13^2 ->
      a+b=13, ab=13^2 ... √a * √b = 13 .. infinite many solutions

    • @paradox2152
      @paradox2152 หลายเดือนก่อน

      It has infinite solutions
      Fool
      Take a = 39 and b = 39/2
      a+b = 58.5

    • @alexpo7804
      @alexpo7804 27 วันที่ผ่านมา

      Пока лучший вариант решения задачи.

  • @thHD_0123
    @thHD_0123 26 วันที่ผ่านมา

    Why do you not consider a factorization into (-1)x(-169) or (-13)x(-13) ? Yes, this will lead to solutions with ab

  • @alexvictorovich2649
    @alexvictorovich2649 28 วันที่ผ่านมา

    a=b 1/a+1/a=2/a=1/13=2/26 a=26 a+b=52

  • @ToanPham-wr7xe
    @ToanPham-wr7xe หลายเดือนก่อน +3

    😮

  • @sinTom-o3r
    @sinTom-o3r 2 วันที่ผ่านมา +1

    분모통일시키면 ab=13 a+b=1바로나오자나
    a=1-b
    b(1-b)=13
    -b^2+b-13=0
    이차방정식풀어서 b값 뽑으면 끝아님?

  • @bekbolotshaimerdenov785
    @bekbolotshaimerdenov785 6 วันที่ผ่านมา

    The problem statement should state that a and b are natural numbers, not a>0, b>0. Currently, a=15, b=97.5, a+b=112.5 are also possible answers.

    • @bekbolotshaimerdenov785
      @bekbolotshaimerdenov785 6 วันที่ผ่านมา

      This is just one example, you can get an infinite number of answers.

    • @bekbolotshaimerdenov785
      @bekbolotshaimerdenov785 6 วันที่ผ่านมา

      I don't know English, I translated it with Google, if there are any mistakes in the sentences, please forgive me.

  • @alexchan4226
    @alexchan4226 29 วันที่ผ่านมา +1

    13

    • @kateknowles8055
      @kateknowles8055 19 วันที่ผ่านมา

      If a+b =13 and ab =169 , there exists no pair (a,b) for which 1/a +1/b = 1/13

  • @hustledude
    @hustledude 17 วันที่ผ่านมา +1

    Video takes too long watching you writing everything out, would be so much easier to either use your voice to describe the steps or have them appear as type

  • @elhankara2483
    @elhankara2483 22 วันที่ผ่านมา

    a=1 ; b=(- 12)/13
    1+(-12)/13= 1/13
    Məntiqlə (loqiq) götürəndə məxrəc 0< 1/a=1/b=1/13.

  • @أبوأحمد-ف5س7ظ
    @أبوأحمد-ف5س7ظ 24 วันที่ผ่านมา +1

    Must set condition for a and b real or whole number

  • @謝中銘-c9b
    @謝中銘-c9b 24 วันที่ผ่านมา

    Sol :
    1/a+1/b=1/13
    (1-1/2+1/2) 1/13
    --> (1/2/+1/2) 1/13
    --> 1/26+1/26
    a=26, b=26
    a+b=52
    Ans:a+b=52
    for reference only

  • @manxperuable
    @manxperuable 8 วันที่ผ่านมา +1

    1/14. 1/(13*14)

  • @babacarka8161
    @babacarka8161 วันที่ผ่านมา +1

    Hello ,everybody ! Greetings!
    Thanks , respects and considerations to all of you ...!
    Let me say that , here everything is just wonderful but uncomplete ( sorry to underline) !!!
    We have an infinity of solutions for this equation ( or equality ) .
    Let : a not null , b not null, k not null ,1/a+1/b=1/13 and a=k*b (or b= k*a) .
    Solving the system : 1/a+1/b=1/13 and a=k*b we get :
    13(a+b)=a*b
    13(k*b+b)=k*b*b
    13(k+1)b- k*b*b=0
    b(13*k+13-k*b)=0 and b not null
    13*k+13-k*b=0
    From here , let find k
    K*b-13*k=13
    K=(13)/(b-13)
    Fron there: a =k*b=(13b)/(
    b-13)
    b not egal to 13 , b >0 and a>0 , that means that b belongs to the interval ] +13; + infinity [
    Now for any b belonging to the given interval we have :
    a+b=b(k+1)=( b*b)/(b-13)
    Thanks !
    Fron a former African and Senegalese Student in Moscow, Russia!

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  วันที่ผ่านมา

      Great effort and brilliant approach Boss 🙂
      Thanks for sharing your precious feedback 😌

  • @吳昶霖
    @吳昶霖 3 ชั่วโมงที่ผ่านมา

    1/14+1/(14×13)=1/13
    則14+182=196

  • @marcosreal11
    @marcosreal11 8 วันที่ผ่านมา +1

    Why will this not work? Express with an LCD: (a+b)/ab=1/13 => by inspection, a+b=1.

  • @olesoleg
    @olesoleg 26 วันที่ผ่านมา

    13+13=13*13/13 => 26 = 13 => 26 = (50% of result) => 52 = (100% of result)

  • @benzegoals9518
    @benzegoals9518 15 วันที่ผ่านมา

    a + b = 26 Cuz a=b=13

  • @SomeDudeOutThereInTheWorld
    @SomeDudeOutThereInTheWorld 22 วันที่ผ่านมา

    I think u forgot to state that a and b are natural numbers otherwise you can add more cases in 5:06 for example: 169=338×(1/2)

  • @WorkHard-mr2hz
    @WorkHard-mr2hz 25 วันที่ผ่านมา

    Multiple value of and b

  • @fozzoking
    @fozzoking 8 วันที่ผ่านมา

    He tried to introduce an "indeterminate Equation" problem. But he forgot to provide the conditions - a, b are integers.

  • @williamgraham2468
    @williamgraham2468 27 วันที่ผ่านมา +1

    Why do you assume that a and b are integers?
    You should state that as part of the problem.

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij หลายเดือนก่อน

    (1/a)+(1/b)=1/13
    (a+b)/ab=1/13
    [k(a+b)]]/kab=1/13; k≠0
    k(a+b)=1
    kab=13
    when k=1,
    a+b=1 =>b=1-a
    ab=13
    a(1-a)=13
    a-a²=13
    a²-a+13=0
    ♤=-51
    ♤½=i(51½)
    a = (1/2)+[±i(51½)/2]
    b = (1/2) -[±i(51½)/2]
    ka= kr + ks*z
    when k=1
    r=(1/2)
    s=i(51½)/2
    the same for b:
    kb= ku - kv*z
    when, k=1
    u=(1/2)
    v=-i(51½)/2
    u=r =1/2
    s=-v = i(51½)/2
    =>a= ku+kv*z
    when, k=1
    a+b=1
    (u+vz)+(u-vz)=1
    2u=1
    2(1/2)=1
    1=1. ok
    ab=13
    (u+vz)(u-vz)=13
    u²-(vz)²=13;
    u²=(1/2)²=(1/4)
    (vz)²= v²z²= v²(-1)= -v²= -[(51½)/2]²
    => (vz)²= -51/4
    ab=13
    (u+vz)(u-vz)=13
    u²-(vz)²=13
    (1/4) -(-51/4)=13
    (1/4)+(51/4)=13
    (1+51)/4=13
    52/4=13
    26/2=13
    13=13. ok
    a=ku + kvz
    b=ku - kvz
    then,
    possible solutions are:
    (with k € C, k ≠ 0 )
    a=k/2 + ki√(51/4)
    b=k/2 - ki√(51/4)

  • @dtkywtan
    @dtkywtan 28 วันที่ผ่านมา

    The most obvious answer is 52 just by looking.

  • @АртёмВласов-ъ3ш
    @АртёмВласов-ъ3ш 28 วันที่ผ่านมา +3

    Много лишних записей.и тупой перебор вариантов в конце.

  • @archangecamilien1879
    @archangecamilien1879 29 วันที่ผ่านมา

    Tried to guess and plug things in, lol, didn't come up with anything...at any rate, solving, one gets 13(a+b) = ab, etc, which means one of a or b is a multiple of 13, etc (of course, lol, assuming they are integers, lol)...so just go through multiples of 13...try one after the other...a=13 doesn't itself work, lol, if I didn't make a mistake, then a=26, a=39, etc, hopefully isn't a millionth multiple of 13, lol, should ger there eventually (it could be negative too, lol, so one could go in the positive direction, then in the negative (well, one way to do that would be to try 13, then -13, lol, etc, for each positive a, try the negative counterpart))...didn't actually try this, so it might not be practical, lol...

    • @beiranvand4066
      @beiranvand4066 29 วันที่ผ่านมา

      th-cam.com/video/JF_cp-izoTQ/w-d-xo.htmlsi=kNhtLS9oObQdBEY1

  • @xbao2993
    @xbao2993 24 วันที่ผ่านมา

    it is equivalent to ask: x = y/13, x>0, y>0, then x=?

  • @penguincute3564
    @penguincute3564 29 วันที่ผ่านมา

    If you didn’t specify a must be larger than 0… or b must be larger than 0… there are infinitely many answers…

    • @beiranvand4066
      @beiranvand4066 29 วันที่ผ่านมา

      th-cam.com/video/JF_cp-izoTQ/w-d-xo.htmlsi=kNhtLS9oObQdBEY1

  • @jhoxSPIELE
    @jhoxSPIELE 28 วันที่ผ่านมา

    👍

  • @spdas5942
    @spdas5942 19 วันที่ผ่านมา +1

    I see such type of problems of fitting LHS to a fraction of RHS. Repeat it and match. No exact theory.

  • @승수노-z3e
    @승수노-z3e 27 วันที่ผ่านมา

    1/2+1/2=1
    1×2+1×2/2×2=4/4=1
    1/13=
    1*X+1*Y=(1*X)+(1*Y)/X*Y=
    (1*X)+(1*Y)/13,
    X+Y/X*Y=
    1/13
    2 1= 3/2 1.5
    2 2= 4/4 1
    2 3= 5/6
    2 4= 6/8 3/4
    2 5= 7/10
    2 6 = 8/12 2/3
    2 7= 9/14
    10/16 5/6
    11/18
    12/20 6/10 3/5
    13/22
    14/24 7/12
    15/26
    16/28 8/14 4/7
    .a+b/a×b=1/13.
    I know answer but what you mean my answer for you.
    Try solve it yourself

  • @cabinetdecuriositestechniq3059
    @cabinetdecuriositestechniq3059 11 วันที่ผ่านมา +1

    But de l'équation : gagner de l'argent avec la publicité.

  • @rudolfquetting2070
    @rudolfquetting2070 29 วันที่ผ่านมา

    From which statement did you conclude, that the solution should consist of natural numbers only? There is no such statement. But as there is 1/13 on the right side of the equation, it can be fairly be assumed, that the equation is an equation between rational numbers (or any other finite or infinite ring or field of numbers which include something like 1/13. And then you may have a different number of solutions or infinitely many solution.
    Why is this so important?
    Simply because this claims to be taken from the “Math Olympiad” and not the “Olympiad of Calculations”.

    • @bobh6728
      @bobh6728 28 วันที่ผ่านมา

      If this was a 10 point question, you would probably get 1 point for finding the 52, 2 points for getting the 196. All ten points if you determine some paramatized form of all solutions.

    • @rudolfquetting2070
      @rudolfquetting2070 28 วันที่ผ่านมา

      @@bobh6728 You can try to solve the equation for one set of numbers at a time only.
      1.) Let’s try to solve 1/a+ 1/b = 1/13 in Z2 = {0,1} (Integers module 2):
      Lets start, trying to solve 1/a = x for a. The only candidates for a solution are 0 and 1 (That are the only elements in Z2).
      Assume a =0. Than (1/0)•0 = 1 = x•0 = 0. Contradiction.! Therefore a can’t be 0. And b can’t be 0 too by the same argument.
      Therefore, there is only a=b=1 left. But 1/1 + 1/1 = 2 = O = 1/13 = 1/1 = 1. Contradiction!
      Result: There is no solution of the equation 1/a + 1/b in Z2.
      2.) Let’s try to solve 1/a + 1/b = 1/13 in Z3 = {O,1,2} (Integers module 3):
      In Z3 we have 1/13=1/(4•3+1)=1/1=1. So we have to solve 1/a+1/b=1.
      In Z3 we have 0+0=0, 0+1=1, 0+2=2, 1+1=2, 1+2=0 and 2+2=1.
      Case 1: 1/a+1/b = O+1 (or 1+0). Assume a=0, then there must be some x in Z3, so that (1/0)•0 = 1 = x•0 = 0. Contradiction! Hence a (and b) can’t be 0
      Case 2: 1/a + 1/b = 2 +2 = 1. Then 1/a = 2 and 1/b =2 must hold, which is equivalent to (1/a)•a = 1 = 2•a. This equation is wrong for a=0 and a=1, but it holds for a=2 (and b=2 respectively.
      Result: There is exactly one solution in Z3, namely a=b=2.
      And, as we have seen in the video, there are 3 solutions in Z+ (positive Integers) (2 solutions being symmetrical) and, as we have seen in the comments, there are infinitely many solutions in Q (rational numbers).
      And so on.
      From the mathematical point of view, the problem was formulated incomplete, which should not be the case in an Olympiad.
      If the problem is formulated incomplete, it is up to the problem solver, to complete it in some suitable way. And if I complete it and solve it for example in Z2, the the right answer is “This equation has no solution”. And the assessment should be “10 points”. But I am afraid that “Zero points” will be imore likely.
      From the engineers point of view, an infinite number of solutions is most likely, as most engineers assume all numbers to be real numbers.
      But I can’t see any motivation to look for solutions in the positive integers only, as it is done in the video. It’s just arbitrary.

    • @RexxSchneider
      @RexxSchneider 28 วันที่ผ่านมา

      @@bobh6728 13b + 13a = ab
      b = 13a / (a - 13)
      a+b = a + 13a/(a-13) = a^2 / (a - 13)
      Not really worth 10 marks.

  • @clancyimislund5783
    @clancyimislund5783 28 วันที่ผ่านมา

    a = b = 26 works

    • @surawutch
      @surawutch 28 วันที่ผ่านมา +1

      1/a + 1/b = 1/13
      1/a = 1/13 - 1/b
      1/a = (b-13) / 13b
      then
      1 = b-13 and. a = 13b
      b = 14 , a = 182

  • @은나-d2h
    @은나-d2h 29 วันที่ผ่านมา

    No integer condition answer infinite

    • @beiranvand4066
      @beiranvand4066 29 วันที่ผ่านมา

      th-cam.com/video/JF_cp-izoTQ/w-d-xo.htmlsi=kNhtLS9oObQdBEY1

  • @victorsladkovsky5653
    @victorsladkovsky5653 26 วันที่ผ่านมา +1

    Clickbait