The Mystery of Hyperbolicity - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น • 353

  • @numberphile
    @numberphile  10 หลายเดือนก่อน +29

    See brilliant.org/numberphile for Brilliant and 20% off their premium service & 30-day trial (episode sponsor).
    More videos with Holly: th-cam.com/play/PLt5AfwLFPxWJ8GCgpFo5_OSyfl7j0nOiu.html

  • @lordofmorgul
    @lordofmorgul 10 หลายเดือนก่อน +549

    "I don't do arithmetic in front of people."
    I'll have to start using that phrase, it's brilliant!

    • @sploofmcsterra4786
      @sploofmcsterra4786 10 หลายเดือนก่อน +24

      For real - it's humble, self-assured, and honest. Definitely gonna steal that one.

    • @iamdigory
      @iamdigory 10 หลายเดือนก่อน +25

      "I'm a mathematician not a calculator"

  • @e4jasperi
    @e4jasperi 10 หลายเดือนก่อน +84

    I love how she summarizes a difficult problem so succinctly!

  • @hardyworld
    @hardyworld 10 หลายเดือนก่อน +125

    I remember Holly in college (at U of I) and she was exactly like she is in this video: humbly brilliant.

    • @Da34Box
      @Da34Box 10 หลายเดือนก่อน +5

      I-L-L

    • @berryzhang7263
      @berryzhang7263 10 หลายเดือนก่อน +5

      @@Da34BoxINI!!

  • @elbaecc
    @elbaecc 10 หลายเดือนก่อน +20

    She is back!! Her videos are one of the more memorable ones on this channel for me. Glad she did another one. Hoping for more.🤞

  • @dubbletfoundation4827
    @dubbletfoundation4827 10 หลายเดือนก่อน +254

    When numberphile drops a new holly krieger video ❤

  • @stickfiftyfive
    @stickfiftyfive 10 หลายเดือนก่อน +21

    A *new* video with Holly talking about iteration of Zed and the M set.. my day just got substantially better.

  • @Manusmusic
    @Manusmusic 10 หลายเดือนก่อน +59

    My favourite Numberphile guest talking about an interesting phenomena around the mandelbrot set - this is like a perfect video :)

    • @FunIsGoingOn
      @FunIsGoingOn 10 หลายเดือนก่อน +2

      7:35 "I'm impressed if anyone remembers". And everyone: "yes, sure omg you're back" 😂

  • @tfae
    @tfae 10 หลายเดือนก่อน +6

    Out of all the things to talk about, squaring a number and adding another to it is definitely up there.

  • @Michael75579
    @Michael75579 10 หลายเดือนก่อน +69

    This is another one of those things that sound really simple but no one can prove either way, similar to the Collatz conjecture or the twin prime conjecture. I find it fascinating that with all the progress in maths over the last few centuries stuff like this still eludes us.

    • @MrMtanz
      @MrMtanz 10 หลายเดือนก่อน +3

      Bordering spooky

    • @wesleydeng71
      @wesleydeng71 10 หลายเดือนก่อน +3

      The Collatz conjecture is also a kind of dynamics on integers. So they share some similarities.

  • @vs65536
    @vs65536 10 หลายเดือนก่อน +19

    Finally came to know some open questions dealing with the Mandelbrot set! Thanks Prof. Krieger, and thanks Brady!

    • @denelson83
      @denelson83 9 หลายเดือนก่อน +1

      Two other such open questions are the "Mandelbrot Locally Connected" conjecture and a connection to the Catalan numbers.

  • @jml_53
    @jml_53 10 หลายเดือนก่อน +39

    Fascinating. Will there be a part 2? I'd love to go deeper in to this topic.

    • @dsanzo
      @dsanzo 6 หลายเดือนก่อน +1

      Same. I’d like to go deeper with Holly

    • @yitz7805
      @yitz7805 2 หลายเดือนก่อน

      Same here!!

  • @GruntUltra
    @GruntUltra 10 หลายเดือนก่อน +45

    "I'll be impressed if anyone remembers (the Mandelbrot Set)." OMG I LOVE THE MANDELBROT SET, HOLLY! Just my inner thoughts coming out.

    • @Jeff-zs2pq
      @Jeff-zs2pq 10 หลายเดือนก่อน +1

      More mysteries about the Mandelbrot Set. We already know about pi , about Fibbonaci numbers, and now density of hyperbolicity.

  • @Simbosan
    @Simbosan 10 หลายเดือนก่อน +77

    Well I didn't know before and I still don't know, but now I know nobody else knows. Progress!

  • @lucas.cardoso
    @lucas.cardoso 10 หลายเดือนก่อน +53

    "I don't do arithmetic in front of people". I respect that.

  • @PranavGarg_
    @PranavGarg_ 10 หลายเดือนก่อน +3

    I like how this one and the last -1/12 video revisits on the old hits of this channel and the same professors go much deeper into the same topic.

  • @trashcat3000
    @trashcat3000 10 หลายเดือนก่อน +6

    Professor Krieger's videos are the best. Thank you

  • @IcarusGravitas
    @IcarusGravitas 10 หลายเดือนก่อน +41

    Professor Krieger will always have my main cartiod.

  • @berryzhang7263
    @berryzhang7263 10 หลายเดือนก่อน +3

    Holly is my absolute fav!! So glad to see her back

  • @bentoth9555
    @bentoth9555 10 หลายเดือนก่อน +19

    Always love seeing more of Holly.

  • @Ilix42
    @Ilix42 10 หลายเดือนก่อน +8

    Back in the 80s/90s, the Mandelbrot set was the bases of one of my favorite screensavers for After Dark.

    • @jorellh
      @jorellh 10 หลายเดือนก่อน +2

      were the flying toasters hyperbolic?

    • @germansnowman
      @germansnowman 10 หลายเดือนก่อน +2

      I loved the way it would progressively fill the screen! Watched it for hours.

  • @umbrellajack
    @umbrellajack 10 หลายเดือนก่อน +2

    I love her enthusiasm! This is top notch!

  • @chadricksch
    @chadricksch 10 หลายเดือนก่อน +67

    the minute i see a video with holly i click INSTANTLY

    • @chaebae-il6qe
      @chaebae-il6qe 10 หลายเดือนก่อน +37

      The Holly-Krieger effect as we call it.

  • @Hitsujikai
    @Hitsujikai 10 หลายเดือนก่อน +12

    This is basically why I love maths. There’s so much proofs and even more to learn. Things like this get my brain juices flowing and why I can’t sleep

  • @richoneplanet7561
    @richoneplanet7561 9 หลายเดือนก่อน +1

    Wow - up or down till you hit the graph left or right hit the line - love that visual!

  • @adibamamadolimova5302
    @adibamamadolimova5302 10 หลายเดือนก่อน +3

    Thank you brady and every professor appearing on numberphile for these videos. I started doing a maths degree because of them and will be starting second year next week ❤ 😊

  • @peterflom6878
    @peterflom6878 10 หลายเดือนก่อน +69

    "I don't do arithmetic in front of people" is a great libe!

  • @Poizon-
    @Poizon- 10 หลายเดือนก่อน +5

    So happy she's back making videos! :)

  • @secretjazz93
    @secretjazz93 9 หลายเดือนก่อน +5

    this is the sweetest woman on the entire planet earth. the kind of woman you would want as a parent or teacher when you're a child. the kind of woman you would want to marry when you're an adult and stay together until you're both 200 years old. this isn't hyperbole, I'm sure a few hundred years back poets would write countless books and plays about women like her, and emperors would fight wars over her. her smile is burning my heart

    • @ugiswrong
      @ugiswrong 5 หลายเดือนก่อน

      Guess what guv we will be simulating partners orders of magnitudes sweeter, as hard as that is to imagine

    • @secretjazz93
      @secretjazz93 5 หลายเดือนก่อน

      @ugiswrong I'm praying every night, I rlly do hope you're right 🙏

    • @jahnsemtex
      @jahnsemtex 3 หลายเดือนก่อน +1

      Bro, you are coming on a bit strong! 🙏🏻🙏🏻

    • @secretjazz93
      @secretjazz93 3 หลายเดือนก่อน

      @@jahnsemtex I really don't think so I'm just being honest

  • @aachucko
    @aachucko 10 หลายเดือนก่อน +2

    Gooooooood morning Holly! My day just got better.

  • @andrewjetter7351
    @andrewjetter7351 10 หลายเดือนก่อน +4

    Veritasium's video: "This equation will change how you see the world (the logistic map)" has some excellent perspectives on this concept if anyone wants to check it out.

  • @johnathancorgan3994
    @johnathancorgan3994 10 หลายเดือนก่อน +18

    So nice to see Professor Krieger again, and her midwestern cheer! 😏

  • @RedBarchetta2019
    @RedBarchetta2019 10 หลายเดือนก่อน +2

    Holy Holly! ❤😊 Happy to see you again! Come visit the states for a guest lecture here🎉

  • @pdo400
    @pdo400 10 หลายเดือนก่อน

    What an unexpected video and intriguing (bounded and countable?!) result, thanks Professor Holly!

  • @robinbrowne5419
    @robinbrowne5419 8 หลายเดือนก่อน +1

    The Mandelbrot set is my favourite mathematical bug. It has so many weird features. Especially zooming in and in and finding baby Mandelbrots hiding among the hairs.

  • @dfmayes
    @dfmayes 10 หลายเดือนก่อน +4

    Most charming laugh on Numberphile. 🙂

  • @krabbediem
    @krabbediem 11 วันที่ผ่านมา

    More Holly, more Mandelbrot. I'm really interested in the complex constants producing "stable" cyclic iterations (start at (0+0i) iterate through "n" complex numbers, return to (0+0i) and then start the EXACT cycle over).

  • @peetiegonzalez1845
    @peetiegonzalez1845 10 หลายเดือนก่อน

    Happy to be reintroduced to the Mandelbrot set in such an intuitive way. Of course I spotted it early on, I watched all your older videos and I'll never forget those.

    •  10 หลายเดือนก่อน

      I didn't spot the Mandelbrot set, but I did arrive at the conclusion that it was connected to the bifurcation diagram very early on. I just didn't remember that those two concepts are _very_ related.

  • @tgwnn
    @tgwnn 10 หลายเดือนก่อน +8

    There are so many talented/intelligent/fun presenters here but Holly Krieger will always be the best one. I know it's not a contest, but if it were, she'd easily win it.

    • @nocturnomedieval
      @nocturnomedieval 10 หลายเดือนก่อน +3

      Dr. Grimes too. He appears less frequently but was a must watch since earlier times of the channel

    • @tgwnn
      @tgwnn 10 หลายเดือนก่อน +2

      @@nocturnomedieval yes, if I ranked them (which I obviously would never do because that would be immature and unproductive), he would be my second favorite.

    • @landsgevaer
      @landsgevaer 10 หลายเดือนก่อน

      May I mention Hannah Fry?

  • @nexigram
    @nexigram 10 หลายเดือนก่อน +3

    “I’ll be impressed if anyone remembers.”
    Professor, you’re dealing with a crowd that watches math videos on TH-cam for fun. I’d be more impressed if anyone clicked on this video and didn’t remember. 😂

  • @jack002tuber
    @jack002tuber 10 หลายเดือนก่อน +2

    Density of Hyperbolicity, I'll be working that into as many conversations as I can today

  • @thomasolson7447
    @thomasolson7447 10 หลายเดือนก่อน +2

    z^2 is a vector operation. While it technically isn't a vector, it's still doing vector stuff. The angle it makes with [1,0] is doubled and the magnitude is squared. Same thing with z^n. That plus 'c' part is a resultant operation. So, 'c' can also be a vector, and you can also square it. 'z' is under iteration, 'c' is not. 'c' is a constant. But it has that vector angle multiplication relationship with the original pixel. Since you know the vector aspect of this, you can now make a Mandelbrot Set based on area, instead of distance squared.

  • @macronencer
    @macronencer 9 หลายเดือนก่อน

    I remember an exhibition at the art gallery in Southampton University (where I studied maths) of computer-generated images of portions of the Mandelbrot set. It was beautiful. This would have been in the mid-1980s when such things required expensive computers to make, so a lot of people had never seen it before.

  • @keeponmoovin
    @keeponmoovin 10 หลายเดือนก่อน +1

    one of the coolest videos I've ever seen

  • @wiseSYW
    @wiseSYW 10 หลายเดือนก่อน +18

    -3/4 is exactly at the border of the big blob (the area that have 1 final point) and the smaller blob (2 final points)
    so I will say take the average and make it have 1.5 final points :D

    • @usopenplayer
      @usopenplayer 10 หลายเดือนก่อน

      Makes sense to me! Maybe they can do something similar to the -1/12 magic to figure it out.
      Though I wonder if renormalization would even work on a function like this.
      For some reason it seems like it's way harder to find a pattern in these numbers.

    • @ihrbekommtmeinenrichtigennamen
      @ihrbekommtmeinenrichtigennamen 10 หลายเดือนก่อน +3

      In the 1-blob, you have a cycle of 1 step where each step approaches that one point.
      In the 2-blob, you have a cycle of 2 steps where each step in the cycle approaches one of 2 different points.
      In the 3-blob, you have a cycle of 3 steps where each step in the cycle approaches one of 3 different points.
      etc.
      Right at the border between the 1-blob and 2-blob (i.e. at -3/4), the "2 different points" are *the same point* (which seems to be -1/2).
      Edit:
      And right at the border between the 1-blob and 3-blob(s) (i.e. at -1/8 ± i*1/3), the "3 different points" are *the same point* (which seems to be -1/4 ± i*9/20).

    • @U014B
      @U014B 10 หลายเดือนก่อน +4

      You can't have half -an A press- a point!

    • @v2ike6udik
      @v2ike6udik 10 หลายเดือนก่อน

      ​@@U014Bi think, as non-degree math dude, that this is where hopf fibration dudes dive in to the thread and say "well, äkšjhuli..."

    • @sarahspencer2359
      @sarahspencer2359 10 หลายเดือนก่อน +2

      it has 1 final point but converges logarithmically slowly, so it has 1 but takes so long for it ot get there

  • @silviojunger1806
    @silviojunger1806 10 หลายเดือนก่อน +2

    From 3:41 onwards it looks to me as it it were still converging to the one intersection point, just a bit slower than before. Why would there be two points?

    • @coffeewind4409
      @coffeewind4409 10 หลายเดือนก่อน +1

      I thought of it like instead of spiraling in on one point, the shape would begin to look more like a rectangle with corners that intersect the graph at two points

  • @jansenart0
    @jansenart0 10 หลายเดือนก่อน +2

    JoCo's song about the Mandlebrot Set was actually stating the formula of the Julia set.

  • @TrumpeterOnFire
    @TrumpeterOnFire 10 หลายเดือนก่อน

    Love Holly. Always more Holly please!

  • @shokan7178
    @shokan7178 10 หลายเดือนก่อน

    Love seeing the CMS in the background

  • @diegomo1413
    @diegomo1413 9 หลายเดือนก่อน +1

    All my homies love Prof. Krieger 😍

  • @frankharr9466
    @frankharr9466 9 หลายเดือนก่อน

    It's nice to know there are things to find out.

  • @dotprodukt
    @dotprodukt 10 หลายเดือนก่อน +1

    Soooo.... We need to try to look for singularities in the complex plane, within the bulbs of the Mandelbrot that violate this conjecture?
    I see two potential levels to this.
    1. Points within a bulb that don't converge.
    2. Points within a bulb that have a different orbit period than their neighbors. (They would be hyperbolic, but I think this alone would still be interesting)
    I feel like analytical approaches are the only viable option...

  • @Cyrathil
    @Cyrathil 10 หลายเดือนก่อน +1

    The second I saw z^2 - a constant Jonathan Coulton's Mandelbrot Set started playing and was waiting for how it relates.

  • @DeepSeeker2809
    @DeepSeeker2809 7 หลายเดือนก่อน +1

    I didn't know Amy Adams did math! Great video!

  • @keopsequinox1624
    @keopsequinox1624 9 หลายเดือนก่อน

    Super interesting as always. Thank you for your videos!

  • @odamai
    @odamai 10 หลายเดือนก่อน

    I love how this channel makes videos with seemingly the notes of mathematicians.

  • @GetMeThere1
    @GetMeThere1 10 หลายเดือนก่อน +1

    Two questions occur to me: 1) In the first couple of examples, I would have liked to know what the one or two numbers converged to ARE. 2) I wonder whether you could iterate FROM these numbers and GET BACK TO the original number (zero). Like, instead of square and add, you could take the square root and subtract, etc.

  • @JWentu
    @JWentu 10 หลายเดือนก่อน +1

    I hope Dr. Krieger will go back being a frequent guest of the channel.
    It's very interesting that such an easily stated problem is still without an answer.

  • @BenAlternate-zf9nr
    @BenAlternate-zf9nr 10 หลายเดือนก่อน +2

    What limiting behaviors can non-hyperbolic inputs have? Do they all explode to infinity, or do some bounce around forever within a finite region without ever converging to a limit set?

    • @jfpeltier
      @jfpeltier 10 หลายเดือนก่อน

      Yes ;)

  • @OlafDoschke
    @OlafDoschke 10 หลายเดือนก่อน

    Another candle of light in the darkness of the Mandelbrot set.
    You've got an intersting recursion/iteration there, as the Ben Sparks video about orbits in the different blobs of the Mandelbrot set was visualizing the numbers of the series and how the split up, when you go from one blob to another, and Ben Spark was saying at one point, that this is what Hallo Krieger was showing in an earlier video.
    And Holly, I actually do remember the core Meaning of the Mandelbrot set dividing the plane of complex numbers in convergent or divergent, and I also understand the convergent cases can be very different, the first case can even be covered by determinig the point where y=x meets the x^2-1/2 parabola analytically, but I guess only a limited number of such cases exist, especially whenc actually is a complex number. And it's fascinating that even a simpler number like -3/2 is not known to have the hyperbolic feature or not. I haven't tried but I know throwing a program at this you will easily get an answer that you can't decide whether it's due to the precision limits of floating numbers or mathematically true or false.
    So does it boil down to finding new mathematically purely analytical methods that can replace the iterative approximation method? Or is it more like proving whether the iterative method works well and which crietria have to be met? Just like you can find counter examples for the Newton's method to finding roots of functions failing?

  • @JosBergervoet
    @JosBergervoet 9 หลายเดือนก่อน +2

    It's a bit like the Collatz conjecture, but for real (or complex) numbers.

  • @TheStudioManila
    @TheStudioManila 10 หลายเดือนก่อน +2

    Mandelbrot by Holly is a series ! I need to buy colored sharpies for math brain teasers, its so much fun 🤩😂

  • @albert-gg6bd
    @albert-gg6bd 10 หลายเดือนก่อน +3

    Hey Holly, amazing video as always! I am a big fan of the mandelbrot set and love to cumpute rendering videos of it. In the background you got this really cool poster/map hanging at the wall. Is there a chance you can give me hint about where you got it or where you could find one of those? I would love to put it up as well 🙂

    • @brianrogers9233
      @brianrogers9233 10 หลายเดือนก่อน

      I think it might be the Bill Tavis Mandelmap poster.

    • @albert-gg6bd
      @albert-gg6bd 10 หลายเดือนก่อน

      @@brianrogers9233 Thank you!!

  • @philltolkien5082
    @philltolkien5082 9 หลายเดือนก่อน +1

    I'm no dummy, the last few videos about iteration, the Julian Set and the Mandelbrot Set I can understand upto a point. This one? I didn't get any of it.

  • @marc-andredesrosiers523
    @marc-andredesrosiers523 5 หลายเดือนก่อน

    Great discussion!

  • @bassmanjr100
    @bassmanjr100 10 หลายเดือนก่อน

    Way too short. I could listen to Professor K for an hour easily. And Miss Holly, yes I remember the Mandelbrot set and your other videos!

  • @ErdTirdMans
    @ErdTirdMans 10 หลายเดือนก่อน +1

    Yay, Holly!

  • @晴良之生恵利
    @晴良之生恵利 10 หลายเดือนก่อน

    > I like squaring numbers and seeing what happens with them in the long term.
    Hm, okay.
    > Let's start with the number z
    Hold on...
    > And then we subtract 1/2
    Mandelbrot sus
    > something something convergence
    Yeah definitely Mandelbrot
    > this is secretly related to the Mandelbrot set
    I KNEW IT!!!!

  • @NathanielAtom
    @NathanielAtom 8 หลายเดือนก่อน

    -3/2 at least appears to be in the Mandelbrot set computationally. Is it strictly that we can't prove it doesn't diverge, or could it have an orbit (without a periodic limit cycle) that continues forever without repeating but is still bounded?

  • @fonkbadonk5370
    @fonkbadonk5370 10 หลายเดือนก่อน +1

    The time I got intersted in fractals was also about the same time kkrieger hit the scene. That's kind of poetic, and I'm properly thrilled that there is still some mathematical mystery around fractals even today. Please visit Holly many times more!

  • @mikeshane2048
    @mikeshane2048 10 หลายเดือนก่อน

    Pulled up my old Mandelbort set generator code after watching this. Now I want to improve its performance see how fast I could make it render.

  • @samyaspapa
    @samyaspapa 10 หลายเดือนก่อน +2

    We know the Mandelbot set on the real line ranges from -2 to +1/4. We also know the Mandelbot set is connected (even if by very thin filaments). Doesn't that imply we know that -3/2 is part of the set and will eventually converge on a set of points? What am I missing?

    • @PopeGoliath
      @PopeGoliath 10 หลายเดือนก่อน

      8:49

    • @greatquux
      @greatquux 10 หลายเดือนก่อน

      I think we know all hyperbolic maps are in the Mandelbrot set, but just being in the set doesn’t necessarily mean it’s a hyperbolic map, which if the case with -3/2.

  • @sarahdaviscc
    @sarahdaviscc 10 หลายเดือนก่อน

    Holly is wonderful.

  • @dominiquelaurain6427
    @dominiquelaurain6427 10 หลายเดือนก่อน

    I created myself a similar conjecture for elliptic billiard (one ball inside ellipse), when you set the reflection law to be, the reflected ray going along the normal at the reflected point : "the ray converges to the 2-periodic orbit, the minor axis....except when you start at vertex of major axis, an unstable starting position". My real mapping function is more complicated than the quadratic you use (z^2 to z^2+c).

  • @RobinDSaunders
    @RobinDSaunders 10 หลายเดือนก่อน

    A fun related fact is Sharkovskii's theorem: for real systems (vs complex like the Mandelbrot set), the possible periods of points can be put in a particular ordering, so that if a system has a point with period m, then it also has a point with period n, for all n which come after m in that ordering. And this is true for any real system at all, using the same ordering!
    Sharkovskii's ordering ends with all the powers of 2, so if a system only has finitely many periodic points then their periods must all be powers of 2. And it starts with 3, so if a system has a point of period 3 then it has a point of every possible order.

  • @gonzus1966
    @gonzus1966 10 หลายเดือนก่อน +1

    I wish Professor Krieger had shown the first few steps of iterating -3/2 through this process.

    • @denelson83
      @denelson83 9 หลายเดือนก่อน

      Yeah, from the first several iterations, -3/2 looks to be chaotic, indicating to me that it falls on the boundary of the Mandelbrot set and not in the interior. Maybe the bifurcation diagram for the quadratic map can shed some light on that.

  • @henrikljungstrand2036
    @henrikljungstrand2036 9 หลายเดือนก่อน

    Why is the notion of a finite point attractor called a "hyperbolic set"? Has it anything to do with hyperbolic geometry (say the symmetries of compact hyperbolic Riemannian geometries)? Or is it related to hyperbolic groups? Something else?
    Is it only the quadratic transform giving rise to the Mandelbrot fractal set that is hyperbolic in some regions, or is this a general concept?

  • @maxheadrom3088
    @maxheadrom3088 10 หลายเดือนก่อน

    This will be the best video ever!!!!

  • @Karlavaegen
    @Karlavaegen 10 หลายเดือนก่อน

    OMG! Welcome back! I wish I had married you 10 years ago, you got a ring some years ago :( Your brain and beauty is beyond phsysics! Great video btw :)

  • @nynros31415
    @nynros31415 10 หลายเดือนก่อน +1

    I love these vids, I really do 😊

  • @MichaelOfRohan
    @MichaelOfRohan 10 หลายเดือนก่อน

    Density of hyperbolicity.. that is suuuper cool.

  • @kaitudhope9122
    @kaitudhope9122 7 หลายเดือนก่อน

    this problem sounds like it heavily relates to the logistic map bifurcation diagram where there is a period doubling route to chaos as it gets closer to 3.57 and beyond that up to 4 it becomes chaotic with some islands of stability

  • @DavidLindes
    @DavidLindes 9 หลายเดือนก่อน

    6:42 - oh, good! Because I've thought about trying, and... it seemed daunting. Now I can just leave it to Holly and the other mathematicians to puzzle on, and not worry about it. :D
    (But if I happen to figure something out next time I'm playing with some mandelbrot or related code, I'll let y'all know. :D)

  • @lorenzo.bernacchioni
    @lorenzo.bernacchioni 10 หลายเดือนก่อน

    Saw the thumbnail of a new video with Holly Krieger > Immediately clicked

  • @RedBar3D
    @RedBar3D 10 หลายเดือนก่อน +1

    So cool. I hope to one day find a niche in mathematics interests me enough to work on it.

  • @PunmasterSTP
    @PunmasterSTP 8 หลายเดือนก่อน

    Hyperbolicity? More like "Really interesting; I'd listen endlessly!"

  • @gerardevrard29
    @gerardevrard29 9 หลายเดือนก่อน

    Nice stuff ! Thank you.

  • @fireking99
    @fireking99 10 หลายเดือนก่อน

    Fascinating! Also, I have that same blue book-keeper-opener on the book shelf. How'd that for hyperbolic???? :)

  • @koonwong8582
    @koonwong8582 8 หลายเดือนก่อน

    a special example is when z=0, c=-2.
    It converge directly to 2. any value of c slightly larger than -2 just give random outcomes, if c is slightly smaller than -2 will spiral to infinity

  • @petrospaulos7736
    @petrospaulos7736 9 หลายเดือนก่อน

    Quanta magazine just published an article on this.
    Do you have any links to papers about x->x^2-3/2 case?

  • @aymantimjicht173
    @aymantimjicht173 5 หลายเดือนก่อน

    I proofed the Collatz Conjecture, what's are procedure after ?

  • @reuvengad9148
    @reuvengad9148 9 หลายเดือนก่อน

    Dr. Holly Krieger 💙
    🇪🇸

  • @vassilissolachidis1199
    @vassilissolachidis1199 6 หลายเดือนก่อน

    -3/2 is located between the cardoid and the circle (on the x - real axis)?

  • @maartendas1358
    @maartendas1358 9 หลายเดือนก่อน

    What are the exact criteria for establishing whether a value is hyperbolic? Could there be infinitely many hyperbolic values?

  • @wily_rites
    @wily_rites 10 หลายเดือนก่อน +1

    I was just going to say ... "Very cool, seems reflective of the nature of the cardioid form of the Mandlebrot's non escaping values, that we see in its initial form.". I can't think of the mandelbrot set without imagining myself as the observer, creating the initial cardioid form, out of the circle that is the set when there is no resolution applied to forming it, before iterating. Such a nerd, what else to say! :|
    Hey, Holly no public arithmetic; Can we discuss multiplication, perhaps in private? I do apologize, could not resist.

  • @bunnybreaker
    @bunnybreaker 10 หลายเดือนก่อน

    I love when the plot twist is FRACTALS! 😊

  • @PanzerschrekCN
    @PanzerschrekCN 10 หลายเดือนก่อน +1

    Of course it's about the Mandelbrot set!

  • @TheSuperGuitarGuy
    @TheSuperGuitarGuy 10 หลายเดือนก่อน +1

    I might just be stupid but they both have 2 points on either side of the line. What makes them different?

  • @ThomGustavsson-ir3lt
    @ThomGustavsson-ir3lt 10 หลายเดือนก่อน

    I like to think that mandelbrot and julia set are mathematic visual representations of the edges of infinity. Is this a valid view?

  • @bunnyben5607
    @bunnyben5607 10 หลายเดือนก่อน +1

    Smart and beautiful as alway Dr Holly