where did the pi go? area of a superellipse

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024

ความคิดเห็น • 72

  • @the_magisterate
    @the_magisterate 2 ปีที่แล้ว +59

    i like how the limit as n goes to infinity approaches the area of rectangle

    • @hOREP245
      @hOREP245 2 ปีที่แล้ว +40

      Finally after all these years, we can calculate the area of a rectangle. All it took was Dr Peyam to use two gamma functions.

    • @shinysteve5948
      @shinysteve5948 2 ปีที่แล้ว +12

      It‘s something I find really interesting and funny. You can calculate things like areas in infinite ways and it always ends up the same.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +8

      Wow amazing!!!

    • @IkkiMitsui
      @IkkiMitsui 2 ปีที่แล้ว +1

      This, along the fact that the π in the area of the ellipse/circle comes from the formula containing the (Γ(3/2))² are both mindblowing.

  • @Galileosays
    @Galileosays 2 ปีที่แล้ว +24

    Very nice. Going f to N=infinity gives Area=4ab , which is 4 times a rectangle with base a and height b.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +4

      Wow soooo cool!!!

  • @blandconstant5548
    @blandconstant5548 2 ปีที่แล้ว +6

    actually i was thinking about this some time ago, i was able to find the area quite easily like in this video but the circumference is quite more interesting. nice video tho

  • @TwoGrids
    @TwoGrids 2 ปีที่แล้ว +4

    A super fun video for the superellipse :D

  • @BabyXGlitz
    @BabyXGlitz 2 ปีที่แล้ว

    دكتور پايام أعجبني إشتقاقك هذا كثيراً فشكراً جزيلاً وبارك الله فيك

  • @saulmendoza1652
    @saulmendoza1652 2 ปีที่แล้ว +4

    Beta functions and ellipses!!!

  • @7th_Heaven
    @7th_Heaven 28 วันที่ผ่านมา

    having found no satisfactory videos covering the perimeter of a hyperellipse for the fullcycling playlist I'm here giving the thumbs up for this video.
    added to playlist where it is needed. Liked. subscribed.
    thanks

    • @7th_Heaven
      @7th_Heaven 28 วันที่ผ่านมา

      and realistically I don't even need the perimeter. I need a video expressing continually variable meets and bounds which unify hyperspheres with spheroids/superellipses blended with standard 3 dimensional cubes where the 3 dimensional cube is paradoxically larger than the inverted hypercube, but compressed within the standard cube constraints.

    • @7th_Heaven
      @7th_Heaven 28 วันที่ผ่านมา

      *inverted hypersphere not hypercube.
      though there could be a hypercube as well but that is more restrictive and constrictive than the max of a 3 dimensional cube

  • @jeffreyhersh908
    @jeffreyhersh908 2 ปีที่แล้ว +1

    Finding the perimeter should be interesting as well but much more complex. I expect it would involve some elliptic integrals.

  • @cristhuk7947
    @cristhuk7947 2 ปีที่แล้ว +2

    really cool... as always!

  • @toady5426
    @toady5426 ปีที่แล้ว

    Thank you soo much man!

  • @neilgerace355
    @neilgerace355 2 ปีที่แล้ว +2

    Neat! Looking at the formula I think I can see one of the definitions of e in the limit as n -> inf ....?

  • @pes0635
    @pes0635 2 ปีที่แล้ว +1

    gr8 stuff. this beauty made my day :D

  • @onradioactivewaves
    @onradioactivewaves 2 ปีที่แล้ว +2

    How do you not have 1 million subscribers yet, I dont know ...

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      I know, right?

    • @onradioactivewaves
      @onradioactivewaves 2 ปีที่แล้ว

      @@drpeyam you'll get there soon, you deserve it! I really appreciate your videos.

  • @sharpnova2
    @sharpnova2 2 ปีที่แล้ว

    very nice. but how about the circumference? i bet that would be a nightmare

  • @martinzapata7289
    @martinzapata7289 2 ปีที่แล้ว +6

    Now calculate the perimeter 💀

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +3

      💀💀💀

  • @ikocheratcr
    @ikocheratcr 2 ปีที่แล้ว +1

    Next the perimeter?

  • @user-bf1oc4up5g
    @user-bf1oc4up5g ปีที่แล้ว

    Where did you get the 1 from for the integral you created with u sub? Thanks!

  • @TheMauror22
    @TheMauror22 2 ปีที่แล้ว

    Really cool!!

  • @mariodistefano2973
    @mariodistefano2973 2 ปีที่แล้ว +2

    Hi Dr. Peyam. Thanks for sharing. Delicious as ever!
    Once a friend of mine asked about a problem.
    We all agreed to measure the surface In square units to fulfill any area. For irregular surfaces, like the circle, we use the integral function to calculate it and then pi comes out.
    But what would happen if we used instead, unity circles (circles of radius 1) to determine a circle area?
    This way would be more straightforward since we could simply find the correct radius to cover all its area. This way a generic circle would be any actual number. We could call this area R "round meters".
    The question would then be: How to measure the surface, i.e. a square. using round meters? we could fulfill all the areas using smaller circles. In this way, would be a PI counterpart for the square? How would it be?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +3

      That’s what the point of measure theory is 😁

    • @sharpnova2
      @sharpnova2 2 ปีที่แล้ว

      @@drpeyam exactly!

  • @田村博志-z8y
    @田村博志-z8y 2 ปีที่แล้ว +1

    How about the following expression ?
    | x | = a| cos t |^p,
    | y | = b| sin t |^q.
    Here a, b, p, q are positive constants.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +2

      Works too

  • @curtiswfranks
    @curtiswfranks 2 ปีที่แล้ว

    I did this within the first few weeks of my Freshman year in undergrad. Good memories. :)

  • @erickherrerapena8981
    @erickherrerapena8981 2 ปีที่แล้ว +1

    Buen vídeo 😄

  • @МаксимСоколов-д4я
    @МаксимСоколов-д4я 2 ปีที่แล้ว +1

    What are the inflection points of this function?

  • @simonmultiverse6349
    @simonmultiverse6349 2 ปีที่แล้ว

    No, you don't need a quarter of the superellipse. You can take an *EIGHTH* of it because you can re-write the equation as A^n+B^n=1 and then scale X and Y scales appropriately.

  • @MrDazzlerdarren
    @MrDazzlerdarren 2 ปีที่แล้ว +1

    the 4x3x2 could be a 4x2x3x1 which could also be translated into a gamma function lol

  • @randompuppy789
    @randompuppy789 2 ปีที่แล้ว +1

    The take away here is to.... Be Aggressive.

  • @endstaltet
    @endstaltet ปีที่แล้ว

    Hey, thanks a lot for the cool video! Can you help me to generalize this for two different exponents in the equation of the super ellipse?
    The problem is that we lose the exponent that belongs to x I think when substituting.
    And after that the value of the "du" term at the end of the Integral never gets revealed 👀

  • @maximilianmueller4707
    @maximilianmueller4707 5 หลายเดือนก่อน

    Can we do it in higher dimension that would be super

  • @EternalLoveAnkh
    @EternalLoveAnkh 2 ปีที่แล้ว

    Is there a reason you chose 2 and 3 for the denominators?
    RJ

    • @EternalLoveAnkh
      @EternalLoveAnkh 2 ปีที่แล้ว

      Sorry, I didn't finish watching before I asked.
      RJ

  • @Nucleardoom
    @Nucleardoom 2 ปีที่แล้ว

    Nice!

  • @diniaadil6154
    @diniaadil6154 2 ปีที่แล้ว

    I like how he just erases the 4 from 4*pi*a*b after realizing his mistake ahaha

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว

    really cool video no wonder the cops came

  • @magnusmalmborn8665
    @magnusmalmborn8665 2 ปีที่แล้ว +1

    Tangent question (for future video): We have the factorial, now we want to generalize to a continuous function, ie gamma. How do we do that?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว

      Using integrals, look up the definition of the gamma function

    • @magnusmalmborn8665
      @magnusmalmborn8665 2 ปีที่แล้ว +1

      @@drpeyam Sure, but procedurally, how do you figure that out?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว

      What do you mean?

    • @two697
      @two697 2 ปีที่แล้ว

      If you've had this thought, surely you must've heard of the gamma function. There's loads of videos on it

    • @magnusmalmborn8665
      @magnusmalmborn8665 2 ปีที่แล้ว +1

      @@drpeyam We want to interpolate these values, and the very aggressive rise, do I just throw functions at it until one fits, or is there a better way? One that constructs the function analytically?

  • @ubncgexam
    @ubncgexam 2 ปีที่แล้ว +1

    Like ALWAYS... 😎
    A M A Z I N G . . . 🥳🥳🥳

  • @mathaddict9973
    @mathaddict9973 2 ปีที่แล้ว

    In the Chebyshev metric, the unit circle is a square 🤪

  • @ninck8992
    @ninck8992 2 ปีที่แล้ว

    Here's an idea i got from the title. Define an n-ellipse as the set of all points equidistant from n fixed points. This way we would have in R2 circle is the 1-ellipse, ellipse is the 2-ellipse and what would come next?

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +2

      threellipse

    • @angelaross6235
      @angelaross6235 2 ปีที่แล้ว +1

      The 3-ellipse is unfortunately just a point.
      There's in fact only 1 point that is equidistant from 3 other points, which is the center of the circumference that passes through those 3 points

    • @ninck8992
      @ninck8992 2 ปีที่แล้ว

      @@angelaross6235 Thanks, didn't realized that

  • @theproofessayist8441
    @theproofessayist8441 2 ปีที่แล้ว +2

    Nice to see shirt of celebrating women in mathematics Dr Peyam! Any notable female contributors to analysis or PDEs we can get a shoutout too? I only know of Noether for Algebra-land.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      I also know ladyzhenskaya and uraltseva

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 ปีที่แล้ว +1

      Why celebrate females specifically? Why not just celebrate the best mathematicians there have been in general?

  • @manla8397
    @manla8397 2 ปีที่แล้ว

    If N is odd, it will not form any elliptical shapes.

    • @drpeyam
      @drpeyam  2 ปีที่แล้ว +1

      It does, have to use absolute values, as I mentioned

  • @thomasborgsmidt9801
    @thomasborgsmidt9801 2 ปีที่แล้ว +7

    Well, the area of an ellipse is no sweat. But what is the circumfence of an ellipse.
    The circumfence should be the derivative of the area. Why is that not the case?
    Why can you not just go backward from the area function.
    The other possibility is: What is the surface area of an ellipsoid?

    • @iabervon
      @iabervon 2 ปีที่แล้ว +8

      The circumference of an ellipse is the derivative of the area with respect to the radius, which is the parameter that you can increase such that the curve shifts uniformly normal to itself. Unfortunately, shifting an ellipse normal to itself doesn't give you an ellipse, and there's no easy formula for the area of an ellipse plus a uniform normal coating.

    • @tomkerruish2982
      @tomkerruish2982 2 ปีที่แล้ว +8

      Essentially, it's because an ellipse doesn't grow at a uniform rate. Using infinitesimals, if we go from a circle of radius r to one of r+dr, the area is increased by a strip of length 2 pi r and uniform width dr (begins waving hands), with an area of 2 pi r dr. However, if we similarly increase the size of an ellipse, the strip will either not be of a uniform width or the new ellipse will not have the same proportions as the original one.
      The perimeter of an ellipse is hard. Stand-up Maths has a video on it.

    • @simonmultiverse6349
      @simonmultiverse6349 2 ปีที่แล้ว +1

      Matt Parker Stand-Up Maths has a video on the perimeter of an ellipse. That is FUUUUUUUN!
      Also, you say that the circumference is the derivative of the area, but *ONLY IF THE LINE IS EVERYWHERE MOVING AT RIGHT ANGLES TO ITS LOCAL DIRECTION* . That means that your shape will become closer and closer to a circle. It will no longer be an ellipse.

  • @ekadria-bo4962
    @ekadria-bo4962 ปีที่แล้ว

    Its a infinite series with a rigorous proof? 😁😅

    • @drpeyam
      @drpeyam  ปีที่แล้ว

      I’m gonna think about it 😄