Let's Prove The AM-GM Inequality

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ม.ค. 2025

ความคิดเห็น • 12

  • @md.eftekharahmed3865
    @md.eftekharahmed3865 10 หลายเดือนก่อน +2

    Your proof is easy to understand ❤

  • @paultoutounji3582
    @paultoutounji3582 11 หลายเดือนก่อน +1

    What a cool proof ! Bravo !

  • @DihinAmarasigha-up5hf
    @DihinAmarasigha-up5hf 11 หลายเดือนก่อน +2

    Ah...finally a great understandable proof for the Am Gm Inequality

  • @yoav613
    @yoav613 11 หลายเดือนก่อน

    Nice proof

  • @grrgrrgrr0202
    @grrgrrgrr0202 11 หลายเดือนก่อน

    You can prove a much more general statement by first proving the inequality for weighted means of two elements. I.e.
    t*a + (1-t)*b >= a^t*b^(1-t), with a,b>0 and t in (0,1).
    Fix t and b and let f(a) be the difference (which we wanna prove to be nonnegative). We first look at f' and find that f'(a) = t - t*a^(t-1)*b^(1-t). We see that f'(a)=0 at a=b. Furthermore, f' increases so f'(a)

  • @ΕκπαιδευτήριαΚαντά-η1ω
    @ΕκπαιδευτήριαΚαντά-η1ω 8 หลายเดือนก่อน

    cube ID x^3+ψ^3+z^3-3xψz=1/2(x+ψ+z){(x-ψ)^2+(ψ-z)^2+(z-x)^2}>=0 x^3+ψ^3+z^3>=3xψz if a=qubx b=qubψ z=qubz we proved identity cauchy for three qub means three root

  • @yakupbuyankara5903
    @yakupbuyankara5903 11 หลายเดือนก่อน

    X=Y=Z=3

  • @insaromarov1462
    @insaromarov1462 8 วันที่ผ่านมา

    Bro u could do it easier
    (x+y+z)³>=27xyz and then by am gm