Error Correcting Codes 3a: Cyclic Codes - Polynomial Properties

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ม.ค. 2025

ความคิดเห็น • 28

  • @happybreadduck
    @happybreadduck ปีที่แล้ว +9

    you just saved my computer science degree with your videos on block codes

  • @vasilnikolov8576
    @vasilnikolov8576 10 หลายเดือนก่อน +2

    You do an amazing job deriving complex topics from the ground up. I'm so glad to have access to this precious content!

  • @eleazaralmazan4089
    @eleazaralmazan4089 4 ปีที่แล้ว +18

    You seriously need more subscribers! This information is too good!

  • @EvanMildenberger
    @EvanMildenberger 4 วันที่ผ่านมา

    For anyone wondering how this relates to other parts of math: the integers and univariate polynomials like shown here are both rings under addition and multiplication (they'd just be monoids if only referring to one of the operations). In the modular arithmetic notation, the divisor on the right of the slash is known as an ideal (which is the equivalent of a normal subgroup from group theory). In the context of a homomorphism like `Z / 2Z`, the `2Z` ring is the kernel of the homomorphism (group/ring preserving transformation) because it's subset in the domain that gets mapped to the identity element in the codomain (zero for modular arithmetic). What's left over from the homomorphism in the codomain set after "removing" the equivalence class of cosets typified by the kernel ideal is homomorphism's image `Z / 2Z` or Z_2.
    You can see why prime-number-order integers under modular addition & multiplication are fields (being groups, not just monoids, as respects each operation) because the identities for each operation, 0 and 1 respectively, are their own inverses but for the rest of the numbers, they have to be able to be paired up so there must be an even number. Other than 2, all prime numbers are one more than an even number so you can expect that a field under modular arithmetic will necessarily be one more than an even order. But not all odd ordered sets of integers are fields so it's not sufficient. Maybe it has to do with composite numbers having non-trivial factors and the ability to break groups into simple group factors.
    Anyways, a year ago I had no idea what any of these words meant. So it's satisfying to see the puzzle coming together!

  • @test1test2-zv3xn
    @test1test2-zv3xn 11 หลายเดือนก่อน

    can someone tell me 3:00 what value will be plugged into x in this case ? the order of the galois field ? the generator polynomial ? something else 😵

  • @Adityarm.08
    @Adityarm.08 ปีที่แล้ว +1

    IIUC Being able to factor some polynomials only in complex coefficients is similar to how primes can be factored in rational/real/complex parts.

  • @alexzakotianskyi3094
    @alexzakotianskyi3094 ปีที่แล้ว

    This is a great explanation. Great work!

  • @erav848
    @erav848 2 ปีที่แล้ว

    at time 12:40, shouldn't the remainder be -x+1?

  • @sarehassiri7725
    @sarehassiri7725 3 ปีที่แล้ว +4

    High-quality work. Thank you so much

  • @otherbasis8505
    @otherbasis8505 5 ปีที่แล้ว +21

    Love your videos. Here since tensors. One constructive criticism: please consider changing wording at the end. Instead of "supporting me" (that does not sound right) say something like "supporting my work" or "supporting this project" or "supporting this and future projects" or some such. I mean, basically, this is not about you, but the (great) work you're doing.

    • @farhanbinamin
      @farhanbinamin 3 ปีที่แล้ว +3

      doesn't supporting him mean that you are supporting his work?

  • @strokesagario1420
    @strokesagario1420 5 ปีที่แล้ว +3

    Tres bon video! T'as m'aide bcp, merci

  • @TTTooobbbiiiii
    @TTTooobbbiiiii 3 ปีที่แล้ว

    best video on this topic!!!

  • @112BALAGE112
    @112BALAGE112 5 ปีที่แล้ว +4

    Ben Eater is also doing a series about error correcting algorithms and has made a video on CRC. Highly recommend it.

  • @tavinorigami
    @tavinorigami 5 ปีที่แล้ว +2

    thank you for these very good videos

  • @deba2091
    @deba2091 11 หลายเดือนก่อน

    Where are remaining ECC videos?

    • @eigenchris
      @eigenchris  11 หลายเดือนก่อน

      I lost interested and never finished them. Sorry.

  • @brunomartel4639
    @brunomartel4639 3 ปีที่แล้ว +1

    FREAKING LOVE YOU

  • @mozhang7258
    @mozhang7258 4 ปีที่แล้ว +1

    Thank you it's really helpful

  • @strokesagario1420
    @strokesagario1420 5 ปีที่แล้ว +2

    Ty very much'! You've helped so much

  • @Sharikkhursheed
    @Sharikkhursheed 5 ปีที่แล้ว +3

    hello eigen Chris.. please upload further about tensors.. To go for understanding of General relativity

  • @Max-hf7fx
    @Max-hf7fx 5 ปีที่แล้ว +1

    thanks

  • @brunomartel4639
    @brunomartel4639 3 ปีที่แล้ว +1

    HANDS DOWN IM GIVING you a million bucks when I get rich

  • @alibaba888
    @alibaba888 2 ปีที่แล้ว

    i spent a fucking hour in my lecture and got lost. You are god

  • @alan2here
    @alan2here 5 ปีที่แล้ว

    Redundancy Space :-P

  • @emmanuelkibicho4743
    @emmanuelkibicho4743 3 ปีที่แล้ว +1

    Wow!!!!!!!!!

  • @xiaofengcheng6692
    @xiaofengcheng6692 2 ปีที่แล้ว

    it's different from other slide ,i have studied, use new ways to explain cyclic code,tks!!!