David Spivak: Categorical Databases

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น • 10

  • @joshux3210
    @joshux3210 ปีที่แล้ว +2

    2:15 starts

  • @sippy_cups
    @sippy_cups 4 ปีที่แล้ว +2

    lol that guy in the front left cannot stop bouncin!! good for him

  • @naayou99
    @naayou99 3 ปีที่แล้ว +1

    side note: 36:51 isn't the relationship between Employees and Departments many-to-many? Is adherence to the relational model insignificant to David's category-theoretical representation?

  • @pmcgee003
    @pmcgee003 2 ปีที่แล้ว

    32:00 mentions C->D (pre)composed to D->Set giving C->Set, mentioning a contravariant functor ... but these are Functors ...
    A contravariant functor would see morphisms compose this way ... so ... ? (processing)

    • @pmcgee003
      @pmcgee003 2 ปีที่แล้ว

      Actually it just seems like normal composition ... c->d; d->set

    • @StewartMcGinnis
      @StewartMcGinnis 2 ปีที่แล้ว +2

      ​ @Paul McGee you're right that it is just normal composition of functors
      The contravariant functor here is Delta. It takes a morphism of schemas F:C->D to a morphism from the set of D-Instances to the set of C-Instances
      Delta_F: D-Inst -> C-Inst
      and it does so by taking an instance i : D->Set to F composed with i (F;i in Spivak's notation). We could rewrite it a little more functorially like this:
      Delta: Schema -> Set
      Delta(C) = C-Inst
      Delta(F): Delta(D) -> Delta(C)
      and then we'd have Delta(FG) = Delta(G)Delta(F)

    • @pmcgee003
      @pmcgee003 2 ปีที่แล้ว +1

      ​@@StewartMcGinnis nice. thank you

  • @fredeisele1895
    @fredeisele1895 5 ปีที่แล้ว +1

    Should not the Grothendieck @34:30 construction include edges to nodes indicating the "able/type" to which they belong?

  • @AnarchoAmericium
    @AnarchoAmericium 5 ปีที่แล้ว +1

    Is there a state monad and store comonad for databases? If so, how do they work?

  • @highviewbarbell
    @highviewbarbell ปีที่แล้ว

    Is David the son of Michael Spivak?