Universal Differential Equations for Scientific Machine Learning - Chris Rackauckas MIT

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 10

  • @AJ-et3vf
    @AJ-et3vf ปีที่แล้ว

    Great video. Thank you.

  • @kallolroy5029
    @kallolroy5029 4 ปีที่แล้ว +1

    Great idea Chris

  • @kiranshila
    @kiranshila 4 ปีที่แล้ว

    Another awesome video! Thanks Chris!

  • @orrymr
    @orrymr 4 ปีที่แล้ว +1

    Thanks for this talk :). Are the slides publicly available?

    • @chrisrackauckasofficial
      @chrisrackauckasofficial  4 ปีที่แล้ว

      Yes, a version of the slides are up at figshare.com/articles/presentation/Universal_Differential_Equations_for_Scientific_Machine_Learning/12751937

  • @youngjin8300
    @youngjin8300 4 ปีที่แล้ว

    I've been informally putting my thoughts into this matter, or something along this line. I would love to see more researches related to this. I checked your paper on arxiv. Is there more papers or books you could refer me to?

    • @chrisrackauckasofficial
      @chrisrackauckasofficial  4 ปีที่แล้ว +2

      I gathered an explanation of these kinds of methods in the MIT 18.337 lecture notes: github.com/mitmath/18337 . These reference a lot of different primary literature throughout as well. However, I don't know of a book to refer to. If there's any book that's useful, it would be Griewank's Automatic Differentiation tome, but indeed that doesn't cover the scientific aspects like PDEs.

    • @chandrasekharjinendran6844
      @chandrasekharjinendran6844 4 ปีที่แล้ว

      Thanks Christopher

  • @andres_pq
    @andres_pq 4 ปีที่แล้ว

    Hello Chris, wild idea here. What if this procedure can be used to extend the SIR model for pandemics? Maybe learning future parameters for better modeling the next illness-19. Please contact me if you are interested, I'm currently studying my masters' degree.

    • @chrisrackauckasofficial
      @chrisrackauckasofficial  4 ปีที่แล้ว

      See covid19ml.org/ and www.medrxiv.org/content/10.1101/2020.04.03.20052084v1