Find all x

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ธ.ค. 2024

ความคิดเห็น • 70

  • @mohammadalvee8411
    @mohammadalvee8411 2 หลายเดือนก่อน +81

    "Those who stop learning stop living"🔥

    • @Mohak-gq5sw
      @Mohak-gq5sw 2 หลายเดือนก่อน +9

      "Those who stop living stop learning" 💀

    • @mythyt3947
      @mythyt3947 2 หลายเดือนก่อน +1

      Umm,why taking it so seriously 😅

    • @ChOwToo
      @ChOwToo 2 หลายเดือนก่อน +1

      @@Mohak-gq5sw The first affirmation is the general case, yours is a specific one.

  • @jakehobrath7721
    @jakehobrath7721 2 หลายเดือนก่อน +9

    With my first impression of your videos, I didn’t quite latch on. But as I kept with the channel, I discovered that the exercises you choose for your videos might be the best on TH-cam. They all satisfyingly fit that “what’s the creative trick” pattern you look for in an exercise. I’m kinda hooked now

  • @westquote
    @westquote 2 หลายเดือนก่อน +2

    Just wanted to chime in that this was a truly great video. Sharing with my math nerd friends at work!!

  • @daniorugbani5914
    @daniorugbani5914 2 หลายเดือนก่อน

    You’re really good in your presentations, excellent job.

  • @lornacy
    @lornacy 2 หลายเดือนก่อน +5

    When I am looking for my mistakes, the first thing I check is whether I have messed up a positive or negative somewhere!
    Good to know I'm not alone ❤ Thank you for mentioning that 😊😊

    • @jensraab2902
      @jensraab2902 2 หลายเดือนก่อน +1

      It's often the little things that are tripping us up.
      And apparently it happens to the best of us. Just like you, I'm a bit relieved to see that I'm not alone in my stupid mistakes! 😁

  • @Grecks75
    @Grecks75 2 หลายเดือนก่อน +3

    I solved the problem using the equivalent relation (x - 1)^4 = 12x^2.
    One thing I didn't like about the problem statement is that it doesn't specify the domain of x. Shall we solve it over the reals or the complex numbers?
    When solving in the complex plane, I found two positive real solutions and two non-real complex-conjugate ones in the second and third quadrant with a modulus of sqrt(1 + 4sqrt(3)) ~= 2.816 both. Their argument has an absolute value of approximately 105°.
    No nice numbers here. 😢

  • @emanuellandeholm5657
    @emanuellandeholm5657 2 หลายเดือนก่อน +4

    I tried out this problem the first time you posted it, lol! I got a quartic with almost Pascal's triangle coeffs, but the signs were off. It will be instructive to watch you solve this one for real. :)
    Edit: Yeah, the substitution t = x + 1/x cracks the case wide open. Nice!

  • @rmandra
    @rmandra 2 หลายเดือนก่อน +1

    Thanks!

  • @LearnmoreMoyo-q1o
    @LearnmoreMoyo-q1o 2 หลายเดือนก่อน +1

    A beautiful approach....

  • @arcangyal2269
    @arcangyal2269 2 หลายเดือนก่อน +2

    We have a lot of crazy math exercises, but I did not expect to see one in your channel

  • @jensraab2902
    @jensraab2902 2 หลายเดือนก่อน +4

    I was looking for the link in the description of your video on palindromic polynomials and it seems you forgot to link it. (This video seems to be jinxed! 😅)
    Looked it up in your videos and wanted to post the link for the convenience of all those who wanted to check that video out first but YT apparently doesn't like links my comment and deleted it after just a few seconds. It's called "How to Solve Palindrome Equations". I guess plugging this into the search bar should bring up your video as one of the hits.
    Love your stuff, keep it coming!

    • @jensraab2902
      @jensraab2902 2 หลายเดือนก่อน

      On a rewatch I saw that the title of the video that I so proudly reproduced above because I was looking for it in the channel's video history is shown right there at the 3:24 in its full glory! 🤦🏽‍♂😅😅

  • @autolightview
    @autolightview 9 วันที่ผ่านมา

    Thank you for another great video.
    I’m from Russia and I prefer to do equal transitions. For example, you divided you equation by x^2 and don’t check is x==0 root or not.
    It’s possible to find impossible root x==-1 in some cases.
    You are great at math, just another school of mathematics

  • @chepkwuruihoseaben1336
    @chepkwuruihoseaben1336 หลายเดือนก่อน

    You are a genius

  • @duckyoutube6318
    @duckyoutube6318 2 หลายเดือนก่อน

    Pascal's triangle is amazing. I use it on anything beyond (a+-b)^4
    Saves time and if you do it by hand its really easy to lose sight of signs and like terms.
    You end up with a page full of a's and b's.

  • @SALogics
    @SALogics 2 หลายเดือนก่อน

    Nice problem, Nice solution ❤❤

  • @dikkedorus
    @dikkedorus 2 หลายเดือนก่อน +5

    Where does the "rad" nomenclature come from with the square roots, I never seen that before? I would love to see the solutions plotted on a complex plane, it looks like it would create a nice geometric interpretation somewhere in there.

    • @AvoidsPikes-
      @AvoidsPikes- 2 หลายเดือนก่อน

      I had a Canadian professor in my university who regularly said "rad." Since then, I have believed it to be a non-American, english speaking thing.

    • @PrimeNewtons
      @PrimeNewtons  2 หลายเดือนก่อน +2

      'Radical' for irrational roots. Also, it is shorter than 'square-root of'.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 2 หลายเดือนก่อน +6

    After noting that 1 is not a solution to the equation, we can put (x+1)/(x-1)=y, so we get the equation 3y⁴-6y²-1=0. By solving this multiplying equation by square, we get the solutions to the original equation.

  • @vishalmishra3046
    @vishalmishra3046 2 หลายเดือนก่อน

    *Another approach*
    I simply expanded (1+x)^4 using Pascal's triangle, to get 2 (1+x^4) = (1 + 4x + 6x^2 + 4x^3 + x^4) which simplifies to x^4 - 4x^3 + 6x^2 - 4x + 1 = 6x^2 + 6x^2
    which is (x-1)^4 = 12 x^2 so (x-1)^2 = +/- √12 x On expanding LHS you get x^2 - (2 +/- √12) x + 1 = 0. The 2 quadratic equations give you all 4 solutions (2 real and 2 complex conjugate).
    x = (1 +/- √3) +/- √ [ (1+/- √3)^2 - 1 = 3 +/- 2√3 ], so 2 real solutions are (1+√3) +/- √(3 + 2√3) and 2 complex conjugate solutions are (1-√3) +/- i √ (2√3 - 3). *Simple. right* ?

  • @tcmxiyw
    @tcmxiyw 2 หลายเดือนก่อน +1

    Nice video and great solution. Note that all four of the solutions are complex numbers, two of them are real numbers and two of them are imaginary numbers.

  • @petefritz5679
    @petefritz5679 2 หลายเดือนก่อน +1

    Before dividing through by X^2 shouldn't we first confirm that X does not equal 0? It seems a minor point but maybe shouldn't be overlooked.

  • @surendrakverma555
    @surendrakverma555 2 หลายเดือนก่อน

    Very good. Thanks 🙏🙏🙏🙏

  • @hobojoe6453
    @hobojoe6453 2 หลายเดือนก่อน

    You’re the man

  • @octobermathematics
    @octobermathematics 2 หลายเดือนก่อน

    Thank you from this video I learnt about Palindromic equation today 🙏

  • @shlokthosar8094
    @shlokthosar8094 2 หลายเดือนก่อน +1

    2:03 very good

  • @octobermathematics
    @octobermathematics 2 หลายเดือนก่อน

    Thank you

  • @MONDLIMTHOMBENI-tt2vl
    @MONDLIMTHOMBENI-tt2vl 2 หลายเดือนก่อน

    That nodd after -6 =0 (last line ) hits. I was like oh yes😂

  • @samdean1966
    @samdean1966 2 หลายเดือนก่อน

    A slightly different route would be to transform it into (x-1)⁴=12x² and go (x-1)²=±4√3x, and this can be phrased as a quadratic in x-1

  • @misterj.a91
    @misterj.a91 2 หลายเดือนก่อน +1

    Great. My confusion is now gone

  • @jacobgoldman5780
    @jacobgoldman5780 2 หลายเดือนก่อน +3

    is there a nice simplification for the sqrt(3+2sqrt(3)) as that doesnt look as nice. Otherwise solid solution!

    • @AvoidsPikes-
      @AvoidsPikes- 2 หลายเดือนก่อน

      That was driving me nuts! 😅

    • @tcoren1
      @tcoren1 2 หลายเดือนก่อน

      If there is it's not of the form a+b*sqrt(3) with a and b real numbers.
      Not sure if a more complicated form exists

  • @tambuwalmathsclass
    @tambuwalmathsclass 2 หลายเดือนก่อน

    Great work 👍
    At 10:18
    Next time subtract that 8 from 4ac separately because of that equality 🟰 sign.

  • @tam31433
    @tam31433 2 หลายเดือนก่อน

    This was cute❤

  • @afifamyouni673
    @afifamyouni673 2 หลายเดือนก่อน +2

    i solved it in a different way. i didn't use the substitution method.
    i developed it 1st, then i used the difference of 2 squares formula, then the quadratic formula, and i got the same answers.

  • @SorosKornel
    @SorosKornel 2 หลายเดือนก่อน

    Wow, I didn't think I would meet a Hungarian excercise here. (I'm from Hungary by the way)

  • @XTRA14LIVE
    @XTRA14LIVE 2 หลายเดือนก่อน

    The video is a correction of a previous video where the author made a mistake in solving a problem.
    The author uses the binomial expansion and Pascal's triangle to solve the problem, which is their preferred method.
    The polynomial equation is palindromic, which allows the author to use a specific solving strategy.
    The author uses substitution and the quadratic formula to find the real solutions to the equation, and also identifies the complex solutions.
    The author emphasizes the importance of continuous learning and never stopping to learn.

  • @m.h.6470
    @m.h.6470 2 หลายเดือนก่อน +1

    Solution:
    (1 + x⁴) / (1 + x)⁴ = 1/2
    First of all, x ≠ -1
    Then (a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴
    so (1 + x)⁴ = 1 + 4x + 6x² + 4x³ + x⁴
    if we artificially add and remove (4x + 6x² + 4x³)/(1 + 4x + 6x² + 4x³ + x⁴), we end up with
    1 - (4x + 6x² + 4x³)/(1 + 4x + 6x² + 4x³ + x⁴) = 1/2 |-1
    -(4x + 6x² + 4x³)/(1 + 4x + 6x² + 4x³ + x⁴) = -1/2 |*-1
    (4x + 6x² + 4x³)/(1 + 4x + 6x² + 4x³ + x⁴) = 1/2
    But that literally means, that
    1 + x⁴ = 4x + 6x² + 4x³
    as both the original left term and the new left term are equal to 1/2, so you can multiply both terms with (1 + x)⁴ and end up with the above equation.
    Putting it all on one side and you get
    x⁴ - 4x³ - 6x² - 4x + 1 = 0
    To solve this tricky polynomial, first we divide everything by x²
    x² - 4x - 6 - 4/x + 1/x² = 0
    Then we rearrange the terms a bit
    (x² + 2 + 1/x²) + (-4x - 4/x) - 8 = 0
    (x + 1/x)² - 4(x + 1/x) - 8 = 0
    Now we substitute x + 1/x = u
    u² - 4u - 8 = 0
    u = 2 ± √(4 + 8)
    u = 2 ± √12
    u = 2 ± 2√3
    Now we resubstitute
    x + 1/x = 2 ± 2√3
    (x² + 1)/x = 2 ± 2√3 |*x
    x² + 1 = (2 ± 2√3)x |-(2 ± 2√3)x
    x² - (2 ± 2√3)x + 1 = 0
    x₁,₂ = 1 + √3 ± √((1 + √3)² - 1)
    x₁,₂ = 1 + √3 ± √(1 + 2√3 + 3 - 1)
    x₁,₂ = 1 + √3 ± √(3 + 2√3)
    x₃,₄ = 1 - √3 ± √((1 - √3)² - 1)
    x₃,₄ = 1 - √3 ± √((1 - 2√3 + 3 - 1)
    x₃,₄ = 1 - √3 ± √(3 - 2√3)
    And since 2√3 > 3, we can make it -1 * (2√3 - 3), leading to two complex solutions
    x₃,₄ = 1 - √3 ± i√(2√3 - 3)

  • @nousernameleft999
    @nousernameleft999 2 หลายเดือนก่อน +1

    my approach would be to rewrite it as 0 = (x-1)^4 - 12x^2 = ((x-1)^2+ sqrt(12)x)*((x-1)^2 -sqrt(12)x)
    from difference of squares, so then its just two quadratics

    • @johnlv12
      @johnlv12 2 หลายเดือนก่อน

      awesome approach

  • @aljawad
    @aljawad 2 หลายเดือนก่อน

    A very nice problem! Have you tackled problems involving “dual numbers”?

  • @allanmarder456
    @allanmarder456 2 หลายเดือนก่อน

    After you get the equation x^4 - 4x^3 -6x^2 -4x +1=0 make the substitution x=y+1 to eliminate the cubic term: (y+1)^4 - 4(y+1)^3 -6(y+1)^2 -4y +1 simplifies to
    y^4 - 12y^2 -24y -12=0 Rewrite this as y^4 = 12y^2 +24y +12 =(sqrt(12)*y^2 +sqrt(12))^2. Thus y^4 - (sqrt(12)*y^2 +sqrt(12))^2 =0
    The difference of 2 squares gives you 2 quadratics in y. Solve for y values then back substitute x=y+1 for the final answers.

  • @HBGsantra
    @HBGsantra 2 หลายเดือนก่อน

    NICE PROBLEM 👍👍

  • @mathmachine4266
    @mathmachine4266 2 หลายเดือนก่อน

    2(1+x⁴)=(1+x)⁴
    2+2x⁴=1+4x+6x²+4x³+x⁴
    -1+4x+6x²+4x³-x⁴=0
    I dont feel like solving the quartic equation. But luckily, since this is symmetric, I can apply the following transformation to turn it into a quadratic (well, technically 2 quadratics):
    -1/x²+4/x+6+4x-x²=0
    (Assuming x≠0)
    -(x+1/x)²+4(x+1/x)+8=0
    x+1/x = 2±2√(3)
    x²-2x(1±√(3))+1=0
    x=1±√(3)+√(3±2√(3))
    or
    x=1±√(3)-√(3±2√(3))
    √(3+2√3)=⁴√(3)√(2+√3)
    √(a+b) = √((a+√(a²-b²))/2) + sgn(b)√((a-√(a²-b²))/2)
    √(2+√3) = (√(3/2)+√(1/2)) = (√(3)+1)/√(2)
    √(3-2√3)=⁴√(3)i√(2-√3) = ⁴√(3)i*(√(3)-1)/√(2)
    All 4 solutions are
    x=(1+√(3))(1±⁴√(3/4))
    x=(1-√(3))(1±⁴√(3/4)i)

  • @alexs3243
    @alexs3243 2 หลายเดือนก่อน +1

    What is the intro song?

  • @okaro6595
    @okaro6595 2 หลายเดือนก่อน

    This really cries for the use of the pq-formula. When a=1 and b is even it simplifies things.

  • @mathe-schrittfurschritt3717
    @mathe-schrittfurschritt3717 2 หลายเดือนก่อน +6

    There is another way:
    Original equation is equivalent to
    2+2x^4 = (x+1)^4
    2 + 2x^4 = x^4 + 4x^3 + 6x^2 + 4x + 1
    x^4 - 4x^3 - 6x^2 - 4x + 1 = 0
    x^4 - 4x^3 + 6x^2 - 4x + 1 = 12x²
    (x-1)^4 = 12x²
    (x-1)^2 = sqrt(12)|x|
    ...and from there on, it should be pretty obvious (cases x0).
    Keep up the good work! Regards :-))

  • @tmrapper6378
    @tmrapper6378 2 หลายเดือนก่อน +8

    This is a nice problem

    • @MrCool-fm5ty
      @MrCool-fm5ty 2 หลายเดือนก่อน

      Youre a nice problem

    • @AvoidsPikes-
      @AvoidsPikes- 2 หลายเดือนก่อน

      This problem is very naughty. He solved it nicely though. I would have been dumbfounded. 😅

  • @afuyeas9914
    @afuyeas9914 2 หลายเดือนก่อน

    Alternatively, the equation is equal to (x-1)^4-12x^2 which immediately leads to the two quadratics you end up finding

  • @study_math
    @study_math 2 หลายเดือนก่อน +1

    x^4-4x^3-6x^2-4x+1=(x-1)^4-12x^2=((x-1)^2+2√3x)((x-1)^2-2√3x)

  • @davidzanetti1269
    @davidzanetti1269 2 หลายเดือนก่อน

    This is an off-topic challenge from a non- mathematician: can you prove the divisibility rules for 9 and 3 and use the proof to show that 12461(base 36) is not prime.

  • @Grecks75
    @Grecks75 2 หลายเดือนก่อน +1

    Thanks for showing the t = (x + 1/x) substitution for the palindromic quartic equation. That was interesting, I didn't know it.
    I solved the problem using the equivalent relation (x - 1)^4 = 12x^2. That's another simple and direct way to tackle it.

  • @Nikioko
    @Nikioko 2 หลายเดือนก่อน

    (1 + x⁴) / (1 + x)⁴ = 1/2
    2 (1 + x⁴) = (1 + x)⁴
    2 + x⁴ = 1 + 4x + 6x² + 4x³ + x⁴
    4x³ + 6x² + 4x − 1 = 0

    • @ME-po1dr
      @ME-po1dr 2 หลายเดือนก่อน

      Wrong you forgot to factorise the 2 so it is 2x⁴ instead of x⁴

    • @Nikioko
      @Nikioko 2 หลายเดือนก่อน

      @@ME-po1dr You are right, thanks.
      2 + 2x⁴ = 1 + 4x + 6x² + 4x³ + x⁴
      x⁴ − 4x³ − 6x² − 4x + 1 = 0
      But doesn't help, either.

  • @BRUBRUETNONO
    @BRUBRUETNONO 2 หลายเดือนก่อน

    Hi thanks for your insteresting problem that I solved as here below.
    Of course, I didn't look at your solution.
    Tell me if you like mine.
    (1+x^4)/(1+x)^4=1/2
    2(1+x^4)=(1+x)^4
    x^4+4x^3+6x^2+4x+1=2x^4+2
    -x^4+4x^3+6x^2+4x-1=0
    x^4-4x^3-6x^2-4x+1=0
    (x^4-4x^3+6x^2-4x+1)-12x^2=0
    (x-1)^4-12x^2=0
    [(x-1)^2]^2-[2sqrt(3)x]^2=0
    [(x-1)^2-2sqrt(3)x][(x-1)^2+2sqrt(3)x]=0
    [x^2-2(sqrt(3)+1)x+1][x^2+2(sqrt(3)-1)x+1]=0
    Then
    [x^2-2(sqrt(3)+1)x+1]=0 or [x^2+2(sqrt(3)-1)x+1]=0
    Delta=(sqrt(3)+1)^2-1.1 or Delta=(sqrt(3)-1)^2-1.1
    Delta=3+2sqrt(3)>0 or Delta=3-2sqrt(3)

  • @benhassineiem
    @benhassineiem 2 หลายเดือนก่อน

    I USED A DIFFERENT APPROACH USING DEVELOPPEMENT OF (x-1)^4 SINCE IT HAS THE SAME COEFF. AS THOSE OF (x+1)^4. ADD OR SUBTRACT AND YOU WILL HAVE SOMETHING LIKE THIS: ( )^4=( )^2

  • @guruone
    @guruone 2 หลายเดือนก่อน

    AsymptoticSum[(-Log[1 - t x]/t)/z /. t -> n/z, {n, 1, z}, z -> Infinity]

    • @mmfpv4411
      @mmfpv4411 2 หลายเดือนก่อน

      Is that your answer? Confused