Aggvent Calendar Day 16

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ธ.ค. 2024

ความคิดเห็น • 50

  • @NavalSharma-r9z
    @NavalSharma-r9z 12 ชั่วโมงที่ผ่านมา +60

    That jump scared me😂

    • @TimMaddux
      @TimMaddux 27 นาทีที่ผ่านมา

      He dropped out of the frame in a similar way in the previous video.

  • @henrygoogle4949
    @henrygoogle4949 9 ชั่วโมงที่ผ่านมา +29

    Hey Vsauce! Andy Math here.

    • @rajivpokharel88
      @rajivpokharel88 9 ชั่วโมงที่ผ่านมา

      i was thinking the same...lol

  • @JenishTheCrafter
    @JenishTheCrafter 8 ชั่วโมงที่ผ่านมา +26

    Andy is behind schedule: :(
    Andy has to upload multiple times to catch up: :)

    • @billhouse1090
      @billhouse1090 ชั่วโมงที่ผ่านมา +1

      How exciting.

  • @Qermaq
    @Qermaq 11 ชั่วโมงที่ผ่านมา +12

    Ah, the VSauce open. Very clever.

  • @JasonMoir
    @JasonMoir 11 ชั่วโมงที่ผ่านมา +8

    It's all about that tangency.

  • @aarrodri
    @aarrodri 12 ชั่วโมงที่ผ่านมา +19

    Need to catch up.. It's the 21st and only at 16th puzzle.. l

    • @CuriousFrag
      @CuriousFrag 11 ชั่วโมงที่ผ่านมา

      Wdym? It's 22nd december

    • @TraegerInc
      @TraegerInc 10 ชั่วโมงที่ผ่านมา +2

      @@CuriousFragdifferent Timezones meaning this guy is in a timezone behind yours 👍

  • @AzouzNacir
    @AzouzNacir 6 ชั่วโมงที่ผ่านมา +2

    Suppose the sides of the yellow and blue triangles are a and b, then the sum of their areas is (a²√3)/4+(b²√3)/4=100, and the area of the green triangle is (ab*sin60)/2=(ab√3)/4, and the square of the length of the side of the pink triangle is a²+b²-2abcos60=a²+b²-ab, and the area is (a²+b²-ab)*√3/4, so the sum of the areas of the pink and green triangles is (ab√3)/4+(a²+b²-ab)*√3/4=(a²+b²)*√3)4=100

  • @KeithEdwinSchooley
    @KeithEdwinSchooley 2 ชั่วโมงที่ผ่านมา

    I love these examples where you isolate a variable, but then don't actually have to solve for the variable to answer the question. I would have solved for x, and then done 3πx^2/2, but your way is so much more elegant. How exciting!

  • @Anab_Khan
    @Anab_Khan 10 ชั่วโมงที่ผ่านมา +2

    When I get bored, I watch Andy's channel.

  • @jimi02468
    @jimi02468 ชั่วโมงที่ผ่านมา

    Funny how they are so often integer answers. You would expect the answers to be irrational, some combinations of sqrt(2), sqrt(3) and pi and stuff like that.

  • @hiemterdiem
    @hiemterdiem 12 ชั่วโมงที่ผ่านมา +3

    how exciting

  • @meks039
    @meks039 6 ชั่วโมงที่ผ่านมา +4

    0:45 X???? ITS NOT LITTLE R????

    • @ItIsIFawn
      @ItIsIFawn 4 ชั่วโมงที่ผ่านมา +1

      It's also a question mark instead of big R

  • @charimonfanboy
    @charimonfanboy 6 ชั่วโมงที่ผ่านมา

    the answer is obviously 100
    But that is because the two bottom triangles are equal the top two triangles must be equal to them too and the question implies that the answer is always the same.
    But, doing it properly... the area of an equilateral triangle is length squared times root3 all over 4
    yellow length is a, area is A
    blue length is b, area is B
    purple length is d, area is D
    green area is C
    (a^2*root3)/4+(b^2*root3)/4=100
    length d is the hypotenuse of a right angled triangle with the bottom length (a+b)/2 and the other side being height of b-height of a,
    height of an equilateral triangle is (length*root3)/2 so using pythag...
    d^2=((a+b)/2)^2+(((b-a)root3)/2)^2
    which simplifies to
    d=root(a^2+b^2-ab)
    which makes the area
    D=((a^2+b^2-ab)*root3)/4
    D=(a^2*root3)/4+(b^2*root3)/4-(ab*root3)/4 as per the above the first section 100, so
    D=100-(ab*root3)/4
    the area of the green triangle is half of length a times length b times sin lowest angle
    equilateral triangles have 60 degree angles, the angle is 180-two of these angles, which is 60, so
    C=(absin60)/2
    which goes to C=(ab*root3)/4
    which makes C+D=100-(ab*root3)/4+(ab*root3)/4=100

  • @Qermaq
    @Qermaq 11 ชั่วโมงที่ผ่านมา +3

    The one at the end, hmm. I can empirically see that it should also be 100. I mean, if yellow = blue, then green and purple are congruent. If yellow = 0 and blue = 100, then green = 0 and purple = 100. No matter how you look at it, it's 100. I tried using law of cosines but that turned into a nightmare. What we learn from that is if the side of the yellow triangle is y and the side of the blue one is b, the side of the purple one is sqrt((y^2 + b^2)/(yb)). Not yet seeing how that's useful in a proof though.

    • @radfue
      @radfue 3 ชั่วโมงที่ผ่านมา

      You are close. If p is the side of the purple triangle, p^2+yb = y^2 + b^2. If you express the purple area in function of p, the green area in function of y and b and the blue + yellow area in funtion of y and b you can make a substitution where all the sides cancel out and you get 100

  • @LucasFCardoso100
    @LucasFCardoso100 ชั่วโมงที่ผ่านมา

    For what we have learned in the past few equilateral triangles, can we assume that: if there's a circle whit radius x inscribed in a equilateral triangle, the height of the triangle will always be 3x?

  • @hashirwaqar8228
    @hashirwaqar8228 6 ชั่วโมงที่ผ่านมา +1

    the sum of pink and green area is 100

  • @ultimaurice
    @ultimaurice 11 ชั่วโมงที่ผ่านมา +1

    your math is always prettier than mine lol

  • @jvn11_official
    @jvn11_official 27 นาทีที่ผ่านมา

    When will the ambush of the 30-60-90 triangles stop 😭

  • @peteyarsky
    @peteyarsky 7 ชั่วโมงที่ผ่านมา

    First, love your content. Second, wondering if I could request a video on a puzzle after the agg-vent series. It is easy to prove that the angle bisectors of the equal angles of an isosceles triangle are equal - but can you prove given that the angle bisectors of a triangle are of equal length, that the triangle is isosceles?

  • @tellerhwang364
    @tellerhwang364 10 ชั่วโมงที่ผ่านมา +2

    day17
    Iet A=sqrt3/4
    1.yellow+blue=A(a^2+b^2)
    2.pink+green=A(c^2+ab)
    3.c^2=(b·sqrt3/2)^2+(a-b/2)^2
    =a^2+b^2-ab
    yellow+blue=pink+green=100😊

  • @radfue
    @radfue 3 ชั่วโมงที่ผ่านมา

    Tomorrow's problem was a bit hard to get the correct method at the beginning but managed to get it
    Hint: Law of cosines with the lower angle of the green triangle and you need to express the area of the green triangle in function of the side lengths of the blue and yellow triangles.
    Answer: 100, more generally the red+green area is always the same as the yellow+blue area

  • @chrishelbling3879
    @chrishelbling3879 11 ชั่วโมงที่ผ่านมา

    Another beautiful solution! But you're falling behind on days?

  • @MYCROFTonX
    @MYCROFTonX 4 ชั่วโมงที่ผ่านมา

    Great!

  • @jeanznho
    @jeanznho 12 ชั่วโมงที่ผ่านมา

    really liking the beard action on my man

  • @cyruschang1904
    @cyruschang1904 8 ชั่วโมงที่ผ่านมา

    Answer to the next question:
    Sin60° = (√3)/2
    If the side lengths of the yellow and blue equilateral triangles are x and y
    (Sin60°)(x^2 + y^2)/2 = 100
    (x^2 + y^2) = 400/(√3)
    Green area = (Sin60°)(xy)/2 = xy(√3)/4
    Side length of the pink equilateral triangle = √[(x/2 + y/2)^2 + ((y/2)√3 - (x/2)√3)^2] =
    √[(1/4)(x^2 + y^2 + 2xy) + (3/4)(x^2 + y^2 - 2xy)] = √(x^2 + y^2 - xy) = √(400/(√3) - xy)
    Pink area = (Sin60°)(400/(√3) - xy)/2 = ((√3)/4)(400/(√3) - xy) = 100 - (√3)/4)xy
    Pink + green = 100

  • @maf654321
    @maf654321 8 ชั่วโมงที่ผ่านมา

    How Aggciting!

  • @TheFreshmanWIT
    @TheFreshmanWIT 12 ชั่วโมงที่ผ่านมา +8

    I'm amazed at how many times you've had to "figure" out that the height of an equilateral triangle with an inscribed angle is 3r.
    It's just funny that this ends up being a part of most of these! Id suggest making a video showing this to be the case, but all of your aggvents would be 30 seconds long :D
    Also, not calling it liTTle-Arrrr is the real crime here.

  • @hardbro_3773
    @hardbro_3773 11 ชั่วโมงที่ผ่านมา

    Tomorrow thw ans would be 100 I think
    We can find the sides of the two triangle which would be x and 2x and then we can get x^2 from there and then. When we can get the area of the green and pink in terms of x and then substitute the value of x^2 in there

  • @ProfessorOof
    @ProfessorOof 4 ชั่วโมงที่ผ่านมา

    nooo i almost got this but did xsqrt3 for the 30 60 90 cs i keep mixing them up

  • @LJR_NOOB69
    @LJR_NOOB69 ชั่วโมงที่ผ่านมา

    Bro looks like Quinn from Dexter

  • @Arta8645
    @Arta8645 12 ชั่วโมงที่ผ่านมา

    yay

  • @TravellingMark5454
    @TravellingMark5454 6 ชั่วโมงที่ผ่านมา

    Andy Math lore
    where he has didn't post for 3 days btween day 14 and 15 because he was using Maths to save the world.

  • @BloodyDagger-u6s
    @BloodyDagger-u6s 10 ชั่วโมงที่ผ่านมา +1

    Is anyone with 60√3 or Am I the only one. All the other people are answering 100 so anyone else with 60√3

  • @joelester460
    @joelester460 12 ชั่วโมงที่ผ่านมา

    Can you do zebra puzzles it would be so fun to watch

    • @Qermaq
      @Qermaq 11 ชั่วโมงที่ผ่านมา +1

      What is a zebra puzzle?

  • @erenerbay
    @erenerbay 8 ชั่วโมงที่ผ่านมา

    First one i solved!

  • @KrytenKoro
    @KrytenKoro 10 ชั่วโมงที่ผ่านมา

    36? 9/4 pir2

  • @pedroamaral7407
    @pedroamaral7407 11 ชั่วโมงที่ผ่านมา

    Next problem: 100

  • @bubtb-yl8lu
    @bubtb-yl8lu 11 ชั่วโมงที่ผ่านมา

    I think tomorrow's answer is 100.

  • @deniseockey6204
    @deniseockey6204 9 ชั่วโมงที่ผ่านมา +1

    Too similar to one you just did.

  • @nenetstree914
    @nenetstree914 7 ชั่วโมงที่ผ่านมา

    36

  • @Kircaldy
    @Kircaldy 6 ชั่วโมงที่ผ่านมา

    Hi Andy, I wonder if you find this one fun: th-cam.com/video/5Yaq7O3D9dY/w-d-xo.html
    The problem says, KN = 9 cm; ABC is an isosceles triangle (AB=BC; AC is the base); BD and CK are medians. They want us to find MD.
    Thanks!