Solving This System of Equations in 2 Ways | Harvard-MIT Mathematics Tournament 2000

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 พ.ย. 2024

ความคิดเห็น • 44

  • @DaveyJonesLocka
    @DaveyJonesLocka 2 ปีที่แล้ว +85

    I was totally expecting the first technique. By contrast, that second technique blew my mind. It is so simple, yet so elegant. I can’t believe it wasn’t part of my equation solving arsenal. Well, it is now!

  • @mcwulf25
    @mcwulf25 2 ปีที่แล้ว +22

    I did it another way. Factorised the second eqn
    (x+y)(x^4-..........+y ^4) = 82
    First brackets is 2. So
    x^4 - x^3.y + x^2 y^2 - x.y^3 + y^4 = 41
    Subtract from this (x+y)^4, expanded, which is just 16, and we get after factorising out -5xy
    -5xy(x^2 + xy + y^2) = 25
    The brackets is just 4-xy after substituting in the square of eqn 1. The rest is like solution 1 where we solve for xy and substitute into eqn 1.

    • @wise_math
      @wise_math 2 ปีที่แล้ว

      Hello there mcwulf, consider look to my channel too for similar math olympiad problems. Thanks and regards.

  • @keinKlarname
    @keinKlarname 2 ปีที่แล้ว +34

    I really like the 2nd approach.

    • @wise_math
      @wise_math 2 ปีที่แล้ว

      Hello there! consider look to my channel too for similar math olympiad problems. Thanks and regards.

  • @Skyler827
    @Skyler827 2 ปีที่แล้ว +21

    You introduced a new variable in the second method, but it seems like it would be easier to just define y= 2-x and put that in the second equation and just solve for x.

    • @bowlteajuicesandlemon
      @bowlteajuicesandlemon 10 หลายเดือนก่อน +3

      It's doesn't seem that much easier to me. You have to factor a cubic polynomial, you can take the factor (x-y) out to make it quartic, while this solution is much quicker.

    • @reeb3687
      @reeb3687 7 หลายเดือนก่อน

      it just looks so nice when the a^5 cancels

  • @themathsgeek8528
    @themathsgeek8528 ปีที่แล้ว +1

    The second method is something I use often so it was nice to see it here!

  • @rlouisw
    @rlouisw 2 ปีที่แล้ว +5

    I did it the first way. The second method is very clever, and it's why I watch videos like this. My brain doesn't often accept the method that makes the problem harder, but in some cases that's the easiest thing to do.

  • @fedorlozben6344
    @fedorlozben6344 2 ปีที่แล้ว +2

    The second one was as so unusual!
    Very interesting substitution

  • @star_ms
    @star_ms 2 ปีที่แล้ว +2

    This is going in my list of tools. Thanks

  • @wes9627
    @wes9627 7 หลายเดือนก่อน

    I only know one way to solve this problem. Substitute x=1+z and y=1-z into the given equation and rearrange to (z+1)^5-(z-1)^5-82=0. Noting that odd powers of z cancel out and using Pascal's Triangle: 1 5 10 10 5 1, we get 2[5z^4+10z^2+1]-82=0 or z^4+2x^2-8=0, which has roots z^2=(-2±6)/2=2 or -4 or z=±√2 or ±2i. It follows that x=1+z=1±√2 or 1±2i and y=1-z=1∓√2 or 1∓2i.

    • @ilayday1
      @ilayday1 4 วันที่ผ่านมา

      Why do u substitute it like that?

  • @badribishaldas9627
    @badribishaldas9627 2 ปีที่แล้ว +2

    Wonderful approach

    • @wise_math
      @wise_math 2 ปีที่แล้ว

      Hello there Badri! consider look to my channel too for similar math olympiad problems. Thanks and regards.

  • @GillAgainsIsland12
    @GillAgainsIsland12 2 ปีที่แล้ว

    That second method was very clever. Conjugates. Of course.

  • @Amoeby
    @Amoeby 2 ปีที่แล้ว +4

    Why did you reject complex solutions? They are quite fitting the system. (1+2i)^5 = 41+38i and (1-2i)^5 = 41-38i. So their sum is equal to 82 and sum of the 1+2i and 1-2i is equal to 2.

    • @ropenutter6321
      @ropenutter6321 2 ปีที่แล้ว +3

      It's because the question asked for real number solutions. He says it in the first 5 seconds of the video.

    • @sdspivey
      @sdspivey 2 ปีที่แล้ว

      @@ropenutter6321 Complex numbers ARE real. Just as real as negative numbers.

    • @ropenutter6321
      @ropenutter6321 2 ปีที่แล้ว +6

      @@sdspivey They certainly do exist BUT they are not real numbers as in they aren't in the set of real numbers, just as 1/2 is not an integer complex numbers do not belong to R but they do belong to C.

    • @Amoeby
      @Amoeby 2 ปีที่แล้ว

      @@ropenutter6321 oh, yeah, I missed that. That explains everything.

  • @robyzr7421
    @robyzr7421 2 ปีที่แล้ว

    Ok until 1.38 time. Then putting (x^2 +y^2) = (x +y) ^2 - 2xy and simplifying I find this : (x+y) ^5=(x^5+y^5) - 5x^2y^2(x+y) +5xy(x+y)^3 and so xy =-1 v xy = 5. Then find x and y by a simple system : x^2 + y^2 = 4 - 2xy.. =6 and x + y = 2.... x =1+ 2^0,5 V y = 1- 2^0,5

  • @charliebrett7510
    @charliebrett7510 2 ปีที่แล้ว +2

    4:00 where do you get z^2 - 2z + 5 from?

  • @cristianionita8359
    @cristianionita8359 2 ปีที่แล้ว +3

    i wrote y=2-x, obtained a quartic and applied newton raphson for it. starting from 0, after 3 or 4 iterations i got something like -0.41421 which looked oddly similar to sqrt(2) after the decimal point.

    • @ranshen1486
      @ranshen1486 2 ปีที่แล้ว

      The quartic can be factored into the form (y^2+ay+b)*(y^2+cy+d).

    • @cristianionita8359
      @cristianionita8359 2 ปีที่แล้ว

      @@ranshen1486 nice, good to know

  • @genosingh
    @genosingh 2 ปีที่แล้ว

    I decided to represent x^5+y^5 as product of x+y and x^4+y^4 and subtracting products appropriately and this allows us to substitute xy=z and then solve the quadratic, and plug into the first eqn to solve for x and y.

  • @SKAOG21
    @SKAOG21 2 ปีที่แล้ว

    Damn the second solution was much smarter

  • @willbishop1355
    @willbishop1355 2 ปีที่แล้ว +4

    Nice problem. I did it the first way, solving for xy. I also noticed that xy has to be negative, because if x and y are two positive numbers that add up to 2, then x^5 + y^5 cannot be larger than 32. So we can reject the xy = 5 solution right away and assume xy = -1.

    • @LouisLeCrack
      @LouisLeCrack 2 ปีที่แล้ว

      Why can't x^5+y^5 be larger than 32?

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 ปีที่แล้ว

    x=1+2i,y=1-2i(e viceversa)... x=1+sqrt2,y=1-sqrt2 è viceversa

  • @bhavyachobisa1972
    @bhavyachobisa1972 ปีที่แล้ว

    2 nd method was very nice

  • @phileasmahuzier6713
    @phileasmahuzier6713 2 ปีที่แล้ว

    That is very clever

  • @lukinhasgatinho16
    @lukinhasgatinho16 2 ปีที่แล้ว

    Obrigado por esse conteúdo !

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 2 ปีที่แล้ว

    У меня получилось, что x^5+y^5=0. Сейчас посмотрю видео.

  • @mariomestre7490
    @mariomestre7490 2 ปีที่แล้ว +1

    Genial. Merci

  • @satyapalsingh4429
    @satyapalsingh4429 2 ปีที่แล้ว

    Both the methods are praiseworthy .Thank you ,genius professor !!!

  • @team-aops01
    @team-aops01 ปีที่แล้ว

  • @rzvn104
    @rzvn104 2 ปีที่แล้ว

    hi

  • @zainabhusain4076
    @zainabhusain4076 2 ปีที่แล้ว

    You didn’t even say why you wrote 10 like that. You need not to skip step to get your point across. Be sure to make more clear.