Time Series Talk : Moving Average and ACF

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 67

  • @odin76
    @odin76 3 ปีที่แล้ว +21

    Such a masterpiece! You're still saving a lot of helpless students like me, even after a few years!

  • @EngineeringEveryday-ef7jm
    @EngineeringEveryday-ef7jm วันที่ผ่านมา

    That video is a piece of scientific art. Thank you.

  • @ramtambat6383
    @ramtambat6383 5 ปีที่แล้ว +7

    Great way of teaching the intuition behind the equation.
    Keep up the good work.

  • @maiaramaciel93
    @maiaramaciel93 4 หลายเดือนก่อน +1

    Your videos are great! Really thank you, from Brazil! ❤

  • @qqq_Peace
    @qqq_Peace 4 ปีที่แล้ว +2

    Thanks for your great video! But one question regarding your explanation: I don't think the only potential term equaling zero is Exp(Error(t-1)^2), instead it should be one Error(t-i) within k

  • @RonDesGroseilliersJr
    @RonDesGroseilliersJr 5 ปีที่แล้ว +30

    I like your videos but it would be helpful if you had a link in the description to your other videos referenced in your talk.

    • @ritvikmath
      @ritvikmath  5 ปีที่แล้ว +7

      great suggestion!

    • @sgpleasure
      @sgpleasure 4 ปีที่แล้ว +5

      Yes, order your videos in a playlist

  • @sanjoybhattacharjee8261
    @sanjoybhattacharjee8261 หลายเดือนก่อน

    I must say, you must have had at least one (if not more) crazy (extraordinary) professors :-) during your graduate program-one of whom you referred to in your previous lecture. Otherwise, how could someone learn such challenging concepts so thoroughly? Kudos to your professors, your dedication to learning, and your excellent explanations! :-) i would request you to make more vedios on Bayesain stats, sampling biases and Methods of Moments, if you have time. ... Thank you

  • @hrituraajdutta1058
    @hrituraajdutta1058 ปีที่แล้ว

    wonderful, I was looking all over the internet for a decent explanation, thanks

    • @ritvikmath
      @ritvikmath  ปีที่แล้ว

      Glad you liked it!

  • @gggcha123
    @gggcha123 5 ปีที่แล้ว +3

    You're wonderful. Please keep the videos coming!

  • @abdelkaderabouelfedaboureg7793
    @abdelkaderabouelfedaboureg7793 5 ปีที่แล้ว +12

    6:54 in the Auto-correlation term: Why you aren't taking in consideration in the second term E(Xt)*E(Xt-k) ?!
    Shouldn't it be auto-correlation is diffrent from 0 if the first term is diffrent from μ^2 ?

    • @massivefoot
      @massivefoot 4 ปีที่แล้ว +2

      He's dropped the mu terms. But if you expand everything out (and use the fact that E[epsilon] = 0) then the mus all cancel out.

    • @akremgomri9085
      @akremgomri9085 3 หลายเดือนก่อน +1

      @@massivefoot Yeah I think you are right, he actually forgot to mention that the left side which is E(Xt * Xt-k) always yealds µ² + something, and he prouved when that something is equal to 0. So the µ² from the left side and the one from the right always cancel out.

  • @karanpreetsinghwadhwa4776
    @karanpreetsinghwadhwa4776 5 ปีที่แล้ว +12

    shouldn't the equation at 6:39 be other way around ? as if we don't want any term in common we need t-q to be greater then t-k!

    • @roryokane341
      @roryokane341 5 ปีที่แล้ว

      That's true but that's not what the statement's saying (note that it's NOT equal to 0). The statement says that the only way to get (at least) two terms in common is for k less than or equal to q.

    • @ritvikmath
      @ritvikmath  5 ปีที่แล้ว

      thanks for helping !

    • @utpalpodder-pk6vq
      @utpalpodder-pk6vq 4 ปีที่แล้ว

      @@roryokane341 i think there is some mistake in the condition....for the condition (t-q)

    • @utpalpodder-pk6vq
      @utpalpodder-pk6vq 4 ปีที่แล้ว

      @@roryokane341 i think the statement is wrong if k

    • @jasontay7234
      @jasontay7234 4 ปีที่แล้ว +4

      @@utpalpodder-pk6vq I think you are right. The condition in the video is wrong. He was trying to show there is no overlap, and if there is no overlap there will be no common term present, and if there are no common term present, it should be = 0 and not != 0.
      So if it is = 0 (no overlap), then the last term E[X(t-q)] should not overlap the first term E[X(t-k)]. Hence, t-q should be >= t-k instead.

  • @chillwithme798
    @chillwithme798 3 ปีที่แล้ว +1

    what is overlap, i dont understand why t-q

  • @srishakarnam738
    @srishakarnam738 3 ปีที่แล้ว +1

    If the MA model uses the errors from the previous periods to forecast, why are we not using the PACF (which is the correlation of residual over the actual values) to determine the appropriate q for the MA model?

  • @vijaygandham1267
    @vijaygandham1267 9 หลายเดือนก่อน

    Thank you so very much Ritvik.

    • @ritvikmath
      @ritvikmath  9 หลายเดือนก่อน

      You're most welcome

  • @alexbenfield8690
    @alexbenfield8690 3 ปีที่แล้ว +7

    Great video but from around 6:30 onwards your words do not match the equations you write. You are saying in words that the inequality between t-q and t-k leads to the overall expected value being zero when it actually leads to the overall expected value being NON-zero as in the equals sign with a cross through it on the left. Took me a while to figure out what you were saying.

    • @alexbenfield8690
      @alexbenfield8690 3 ปีที่แล้ว +1

      To further clarify, if the very last term in X_t with time interval t-q is SMALLER than the t-k value of the very first term in X_t-k, then there is identical error variable overlaps and hence an overall non-zero expected value. On paper what you write makes complete sense but your words say the opposite.

    • @himanshux21
      @himanshux21 2 หลายเดือนก่อน

      @@alexbenfield8690 Yes, it should be strictly t-q is GREATER than t-k, rightly pointed.

  • @zeyuchen5745
    @zeyuchen5745 ปีที่แล้ว

    super helpful! Thanks so much for your ecxcellent work!

    • @ritvikmath
      @ritvikmath  ปีที่แล้ว

      Glad it was helpful!

  • @ulissesmorais4210
    @ulissesmorais4210 ปีที่แล้ว

    Awesome content!

  • @the-brick-train
    @the-brick-train 4 ปีที่แล้ว +2

    hi there - can you give any guidance on the method used to fit MA(q) processes - i.e. find the phi parameters. I can't find much information about this

  • @scottpease9827
    @scottpease9827 3 ปีที่แล้ว +1

    What about the mu's in the E[x(t)*x(t-k)] part? I don't understand why there isn't a mu^2 somewhere?

    • @scottpease9827
      @scottpease9827 3 ปีที่แล้ว

      Oh, it's using the entire covariance equation: E[xy] - E[x]E[y]. The mu^2 gets cancelled out.

    •  3 ปีที่แล้ว +1

      @@scottpease9827 Hi, I was wondering the same .. do I understand it correctly that:
      E[xy] = mu^2 (if the errors are not overlapping) and E[x]E[y] = mu^2, then:
      E[xy]-E[x]E[y]=mu^2-mu^2=0?

  • @raghavendrar16
    @raghavendrar16 5 ปีที่แล้ว +1

    excellent videos! so easy to understand

  • @mohammadrezanargesi2439
    @mohammadrezanargesi2439 3 ปีที่แล้ว

    Thanks gentleman for your video.

    • @ritvikmath
      @ritvikmath  3 ปีที่แล้ว

      Thanks for watching!

  • @ATHULYASHANTY
    @ATHULYASHANTY 4 ปีที่แล้ว

    Great way of teaching! Thank You

    • @ritvikmath
      @ritvikmath  4 ปีที่แล้ว

      You're very welcome!

  • @gina830714
    @gina830714 5 ปีที่แล้ว +1

    Thanks a lot for your clear explanation!

  • @AmanKhan-wk5jf
    @AmanKhan-wk5jf 3 ปีที่แล้ว

    what if there is no E t-1 but we have E t-2. Will it be Moving Average 1 or 2?

  • @puklixty
    @puklixty 3 ปีที่แล้ว

    great explanation in simple terms

  • @Pavankumar-zw2fz
    @Pavankumar-zw2fz 4 ปีที่แล้ว

    Excellent sir.

  • @satishchandra6623
    @satishchandra6623 ปีที่แล้ว

    Why expectation (Xt,Xt-k) is not zero for most terms as except first term all other terms have error terms? As you said expectation of error will always be equal to zero.

  • @chilinh6476
    @chilinh6476 4 ปีที่แล้ว +1

    thank you so much , it helps me a lots

  • @anindadatta164
    @anindadatta164 4 ปีที่แล้ว

    A basic question comes to mind I.e if the expected value of error term is zero, then why at all include the error terms in the time series prediction . In case the EV of Error is not zero, then can the EV value be straight away added to time series prediction without doing all the correlation calculations

  • @berknoyan7594
    @berknoyan7594 4 ปีที่แล้ว

    Thx for the video ritvikmath, i have one question ( i might missed it in the video). Video tells us why ma(3) dont use et-4 term bcs its autocorr is 0 thus it wont add anything to our model. Just like AR vs PACF logic. is that correct? So this is like an explanation video for "why we dont use all the lags and cut the formula after k=q?" I hope i made myself clear. Have a great day.

  • @sahil0094
    @sahil0094 3 ปีที่แล้ว

    Shouldn't k

  • @alexamannn
    @alexamannn 5 ปีที่แล้ว +1

    Hi great videos..really helping a lot..i am just starting data science and economics course...can u please help by making videos on basiscs like wold decomposition, invertibility, impulse response,Linear fiters and forecasting

  • @kerednus1096
    @kerednus1096 ปีที่แล้ว

    thank you so so much

  • @rachadlakis1
    @rachadlakis1 2 ปีที่แล้ว

    Super Like

  • @gaojiamin750
    @gaojiamin750 3 ปีที่แล้ว

    Thank you!

  • @theabhinavexperience
    @theabhinavexperience 4 ปีที่แล้ว

    Thank you 🙏

  • @QuangBui-by6bh
    @QuangBui-by6bh 4 ปีที่แล้ว

    So what is the value of q?

  • @mettataurr
    @mettataurr 4 ปีที่แล้ว +1

    pretty neat

    • @ritvikmath
      @ritvikmath  4 ปีที่แล้ว

      Glad you think so!

  • @Amine382
    @Amine382 2 ปีที่แล้ว

    i love you

  • @ugandauganda7760
    @ugandauganda7760 3 ปีที่แล้ว

    While plotting graph of ACF or PACF against lag ...you talked about error band ....so what is the range of error band we should take.... I mean what are the parameters of error band we should consider..... please reply fast

  • @rishikambhampati2862
    @rishikambhampati2862 4 ปีที่แล้ว

    Thanks for the video. Can anyone please explain what is the expectation value?

  • @maxwelmutuku8394
    @maxwelmutuku8394 3 ปีที่แล้ว

    The formula you're using for ACF is incorrect. That's autocovariance and not autocorrelation.