Laplace domain - tutorial 1: Laplace transform

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ธ.ค. 2024

ความคิดเห็น • 49

  • @casp4431
    @casp4431 5 ปีที่แล้ว +11

    So, I just started my master’s education in control engineering, and I have to say: "This is the most eloquent and straight forward explanation of the Laplace transform I have ever been presented with". Though I only needed a refresher on sigmas relation to stability I ended up watching the whole series on Laplace - I can’t wait to have a look at your explanation of Fourier series and Fourier transform in the coming days! Thank you for providing incredible content to student!

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว +1

      Thank you very much for your kind words and amazing feedback. I am very happy that you decided to stay and watch the whole series on Laplace ;) Please let me know your feedback on Fourier as well. Cheers!

    • @deckerimmanuel600
      @deckerimmanuel600 3 ปีที่แล้ว

      I know it's kinda off topic but do anyone know of a good site to stream newly released movies online?

    • @jadencoleman3186
      @jadencoleman3186 3 ปีที่แล้ว

      @Decker Immanuel i use flixzone. Just google for it :)

    • @juangraysen7553
      @juangraysen7553 3 ปีที่แล้ว

      @Jaden Coleman Definitely, I have been using FlixZone for years myself =)

    • @deckerimmanuel600
      @deckerimmanuel600 3 ปีที่แล้ว

      @Jaden Coleman thanks, signed up and it seems to work =) Appreciate it !

  • @alphasatari
    @alphasatari 6 ปีที่แล้ว +6

    Video we’ve waited a long for.
    Thank you Iman.

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว +1

      Thank you Yash and sorry to keep you waiting.

    • @JaGWiREE
      @JaGWiREE 5 ปีที่แล้ว +2

      @@Kuchdelan Worth every second.

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      @@JaGWiREE You are awesome, Brian!

  • @kymkymo
    @kymkymo 5 ปีที่แล้ว +4

    This is one of the best tutorial videos I've found and I've really scoured this site. I hope more students can find this both to benefit this channel and themselves!

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว +1

      Hey Zenmo, thank you very much for your feedback and kind words. Hopefully, I will get more views and subscribers in the future. Cheers!

  • @mnada72
    @mnada72 3 ปีที่แล้ว +2

    Great approach 👍, thank you. Finally I get to understand the ROC.

  • @sarfraj_
    @sarfraj_ 4 ปีที่แล้ว +2

    Very nicely explained

    • @Kuchdelan
      @Kuchdelan  4 ปีที่แล้ว

      Thank you so much 🙂

  • @ozzyfromspace
    @ozzyfromspace 4 ปีที่แล้ว +2

    Thank you, I needed that clarification at the end! I was doing a math problem where two functions had three possible regions of convergence, but it wasn’t posed with the required region of convergence contrasting e^(-2t)*u(-t) and e^(-2t)*u(t) made so much sense to me. Thank you so much, Iman!

    • @Kuchdelan
      @Kuchdelan  4 ปีที่แล้ว +1

      You again :) Thank you very much for watching all my lectures.

  • @IZZY3201
    @IZZY3201 3 ปีที่แล้ว +1

    Absolutely great explanation, thank you.

    • @Kuchdelan
      @Kuchdelan  2 ปีที่แล้ว

      My pleasure!

  • @officiallounge
    @officiallounge 5 ปีที่แล้ว +3

    Glad you’re back! Keep posting good content! Blessings

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      Thanks a lot my friend.

  • @adambirsigoon694
    @adambirsigoon694 3 ปีที่แล้ว +1

    Looking forward to becoming a ROCstar

    • @Kuchdelan
      @Kuchdelan  2 ปีที่แล้ว

      Lol! Go for it ;)

  • @sntayehushemels3910
    @sntayehushemels3910 11 หลายเดือนก่อน

    great work👏

    • @Kuchdelan
      @Kuchdelan  5 หลายเดือนก่อน

      Thanks ✌️

  • @saikrishna6674
    @saikrishna6674 6 ปีที่แล้ว +2

    Wow....as usual iman rocked 🤘🤘 waiting for your next video 😍😍😍

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      As usual you are very kind and supportive my friend ;)

  • @TheSabri306
    @TheSabri306 5 ปีที่แล้ว +2

    Amazing as always...

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      Thank you for your kindness and support!

  • @hossamfadeel
    @hossamfadeel 5 ปีที่แล้ว +1

    I was waiting for this series ^-^.
    Thanks a lot

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      Thanks a bunch and sorry to keep you waiting Hossam.

  • @thescientist4726
    @thescientist4726 4 ปีที่แล้ว +2

    Amazing I’m on my second year studying this and never was I able to prove a negative real pole Insured stability

    • @Kuchdelan
      @Kuchdelan  4 ปีที่แล้ว

      Pleasure to help!

  • @RAGHAVENDRASINGH17
    @RAGHAVENDRASINGH17 4 ปีที่แล้ว +1

    great video

  • @muhammedkerim3625
    @muhammedkerim3625 5 ปีที่แล้ว +2

    Great ... Thanks :)

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      Thank you ;)

  • @Lestibournes
    @Lestibournes 3 ปีที่แล้ว

    11:32 - Regarding the 2nd example: what about when Re{S} = 0?

  • @Lestibournes
    @Lestibournes 5 ปีที่แล้ว +2

    It took me a few tries before I understood that Re{S}>0 is not "Region of Convergence is greater than zero".
    I think it would help with understanding to say that "the Region of Convergence is where the real part is greater than zero."

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว +2

      Re{s} is a common notation in signal processing books. In general, when we talk about ROC, the concern is the real part of z not the imaginary part. The imaginary part is the pure oscillation. The real part is the part that dictates the convergence. Cheers!

  • @hamzakourta4509
    @hamzakourta4509 2 ปีที่แล้ว +1

    what is the difference between this definition that goes from -inf to inf and the definition that goes from 0 to inf and why we use the first one here???

  • @chawnneal3103
    @chawnneal3103 3 ปีที่แล้ว

    Hey for ILT should the integration variable be ds instead of dt? 4:30

    • @chawnneal3103
      @chawnneal3103 3 ปีที่แล้ว +1

      ohhh lol my bad haha 5:33

  • @pavuluriprasanthi7521
    @pavuluriprasanthi7521 5 ปีที่แล้ว +2

    hello sir actually Fourier transform of e^-at u(t) is exists

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว +4

      Of course, the FT exists as long as "a" is positive

  • @shmuk
    @shmuk 5 ปีที่แล้ว +3

    if we're rock star's. you must be Kurt Cobain 🤘🤘🤘🤘🤘

    • @Kuchdelan
      @Kuchdelan  5 ปีที่แล้ว

      lol, thanks a bunch. Who would you be? :)